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We consider a problem of finding significant connection strengths of variables in a linear non-Gaussian causal
model called LiNGAM. In our previous work, bootstrapping confidence intervals of connection strengths were
simultaneously computed in order to test their statistical significance. However, such a naive approach raises the
multiple comparison problem which many directed edges are likely to be falsely found significant. Therefore, in this
study, we tested two representative techniques of multiple testing correction approaches, the Bonferroni correction
and Mandel’s approach, then evaluated their performance. We found that both the Bonferroni correction and
Mandel’s approach are able to control the familywise error rate of the confidence intervals to be less than the
significance level in LiNGAM.

1. Introduction

In causal analysis, confidence interval is used to deter-

mine whether an edge in the directed acyclic graph is the

significant edge or not. To construct a confidence interval

by using standard methods, an appropriate transformation

or any other background knowledge is required [1]. How-

ever, in order to construct this confidence interval more

simply, the bootstrap technique, which is one of resampling

methods, could be used.

In previous work on LiNGAM [2], the bootstrap confi-

dence interval was used to determine the significance of the

elements in the adjacency matrix estimated by LiNGAM.

However, due to the fact that those elements in the ma-

trix contain the relations between a number of variables,

the confidence intervals with appropriate range could not

be constructed.

In the present study, we tried to use a multiple testing

approach in order to construct a more appropriate confi-

dence interval for each element in the adjacency matrix.

We decided to use two multiple testing approaches, the Bon-

ferroni correction [3], and the recently developed Mandel’s

approach [4], in this study.

2. Background

2.1 LiNGAM
In [5], LiNGAM is a model used for exploratory causal

analysis. It is assumed that the data are generated from a

process represented graphically by a directed acyclic graph,

or DAG. Let bij be the connection strength from a variable

xj to xi, if bij is non-zero then it means that there is a

directed edge from variable xj to xi, and let k(i) be a causal

order of xi in DAG so that no later variable determines or

has a directed path on any earlier variable. Without loss

of generality, each observed variable xi is assumed to have

zero mean. Then we have
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xi =
∑

k(j)<k(i)

bijxj + ei, (1)

where ei are external influences that are continuous vari-

ables having non-Gaussian distributions with zero means

and non-zero variances and are mutually independent. The

independence assumption between ei means that there is

no latent confounding variable. The model (1) is rewritten

in matrix form as

x = Bx+ e, (2)

where the connection strength matrix or adjacency matrix

B collects bij and the vectors x and e are p-dimensional

vectors collecting xi and ei respectively, and B could be

permuted to be lower triangular with all zeros on the diag-

onal by simultaneous equal row and column permutations

according to a causal ordering k(i).

The modeling purpose by using this model is to esti-

mate the connection strength matrix B based on data x

only. Note that since the external influences ei have non-

Gaussian distributions and are mutually independent, the

model (2) is known to be identifiable.

2.2 DirectLiNGAM
In [2], a direct estimation method called DirectLiNGAM

was proposed. DirectLiNGAM estimates causal orders one

by one and eventually a causal ordering of all the variables.

An exogenous variable is a variable with no parent and the

corresponding row of B has all zeros. It can be at the top of

such a causal ordering that makes B lower triangular with

zeros on the diagonal.

In DirectLiNGAM, we continue removing the effect of the

exogenous variable from the other variables by regressing it

out. This procedure is iterated until all the variables are or-

dered. The point is how we can find an exogenous variable.

The following lemma of [2] shows how it is possible:
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Lemma 1 Assume that the input data x strictly follows

LiNGAM, that is, the model (2) with non-Gaussian external

influences. This means that we assume that all the model

assumptions are met and the sample size is infinite. Denote

by r
(j)
i the residual when xi is regressed on xj : r

(j)
i = xi −

cov(xi,xj)

var(xj)
xj(i �= j). Then a variable xi is exogenous if and

only if xj is independent of its residuals r
(j)
i for all i �= j.

To evaluate independence between a variable xj and its

residuals r
(j)
i (i �= j), we first evaluate pairwise indepen-

dence between the variable and each of the residuals us-

ing a kernel-based estimator of mutual information called

KGV [6], which we denote by KGV (xi, r
(j)
i ), and subse-

quently compute the sum of the pairwise independence mea-

sures over the residuals. The non-negative estimator KGV

asymptotically goes to zero if and only if the variables are

independent [6]. Thus we obtain the following statistic to

evaluate independence between a variable xj and its resid-

uals r
(j)
i :

Tkernel(xj ;U) =
∑

i∈U,i �=j

KGV (xj , r
(j)
i ), (3)

where U denotes the set of the subscripts of variables xi,

that is, U = {1, . . . , p}.
2.3 Multiple comparison approaches

Multiple comparison problem is a problem which occurs

when one considers a group of hypotheses simultaneously.

This problem increases the probability of rejecting even one

of the true null hypotheses, known as familywise error rate

or FWER, to exceed the groupwise significance level or α.

Many statistical techniques have been used to develop in

order to correct this problem. In this subsection, we men-

tion two representative techniques of multiple comparison

approaches: the Bonferroni correction [3] and Mandel’s ap-

proach [4].

2.3.1 Bonferroni correction

The Bonferroni correction allows many confidence inter-

vals to be constructed while assuring the groupwise signifi-

cance level is still maintained [3].

In case of LiNGAM, if we have p variables then the size of

adjacency matrix is p×p. In other words, we construct p2−p

confidence intervals for the matrixB excluding the elements

on the diagonal line. In order to construct confidence in-

tervals for p2 − p elements with groupwise significance level

1 − α, one could construct each confidence interval with

coefficient 1 − α
p2−p

. Then for each bij of the adjacency

matrix, we have

P (Lij ≤ bij ≤ Uij) ≥ 1− α

p2 − p
, (4)

where bij is each element in p × p adjacency matrix B,

and Lij and Uij are, respectively, the confidence lower

bound and upper bound of the element bij calculated by

the bootstrap percentile method, that is, Lij is the ele-

ment at
(

1
2
· α
p2−p

)th

percentile and Uij is the element at

100 ·
(
1− 1

2
· α
p2−p

)th

percentile in the ordered N replica-

tions of each bij generated by using the bootstrap method.

2.3.2 Mandel’s approach

In [4], Mandel proposed an algorithm which is used to

construct simultaneous (1 − α)-bootstrap confidence inter-

vals given only data X. Note that each sample of X consists

of p variables. When applying this algorithm to LiNGAM,

we could find the upper limit of the confidence interval by

constructing p2 − p confidence intervals with a groupwise

significance level of 1− α as follows:

1. We generated N bootstrap samples from the original

data. For each sample, estimated matrix Bk = [bkij ]

where bkij is the element at row i column j in p× p ad-

jacency matrix estimated by LiNGAM at kth sample.

2. For each coordinate i, j, we ordered N bootstrap esti-

mates according to their values and denoted them by

b
(1)
ij < · · · < b

(r(i,j,k))
ij < · · · < b

(N)
ij . Let r(i, j, k) be

the sequence order of bkij and b
(r(i,j,k))
ij be the value

corresponding to bkij .

3. We defined ρ(k) = maxi,j(r(i, j, k)) to be the largest

order of kth sample.

4. We ordered ρ(1), ..., ρ(N) according to their values

then picked up the order at 100 ·
(
1− α

2

)th
percentile,

defined as ρ1−α/2.

5. We took the upper limits of the confidence interval of

each bij to be b
(ρ1−α/2)

ij .

By construction, at most α/2 of the bootstrap estimates

have a coordinate with value larger than the upper limit of

the confidence interval [4].

The lower limit of the confidence interval is also con-

structed in the same way. Then the probability when all

p2 − p elements fall in their own confidence interval is

P

( ⋂
i,j,i �=j

{Lij ≤ bij ≤ Uij}
)

≥ 1− α. (5)

3. Simulations

In this study, we performed two experiments with sim-

ulated data. Both experiments consist of 5000 trials. In

each trial, we generated datasets with dimension p = 4 and

sample size n = 1000 then we constructed the confidence

intervals of the estimated matrix B by using the naive ap-

proach, Bonferroni correction, and Mandel’s approach.

The null hypothesis in this case is that each element bij in

the adjacency matrix B is zero. Therefore, the FWER here

is the probability when at least one of these null hypotheses

is erroneously rejected.
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In the first experiment, we constructed p × p adjacency

matrix with all zeros which means that each variable is

independent of the others. However, in the second exper-

iment, we constructed p × p adjacency matrix with some

non-zero elements. We replaced each non-zero element in

the matrix by a value randomly chosen from the interval

[−1.5,−0.5] ∪ [0.5, 1.5] and selected variances of the exter-

nal influences ei from the interval [1,3] as in [2]. Steps of

the experiment are:

1. We set the adjacency matrix B as a zero matrix in the

first experiment, and set the adjacency matrix B as

a matrix with some non-zero elements in the second

experiment.

2. We generated simulation data with sample size n by in-

dependently drawing the external influence variables ei
from various 18 non-Gaussian distributions used in [6]

including super- and sub-Gaussian distributions and

symmetric and asymmetric distributions. Then the

values of the observed variables xi were generated ac-

cording to the LiNGAM model (2).

3. We iterated bootstrap sampling from the generated

data for N replications (in this simulation, N = 2000)

and then we calculated an estimated matrix B by us-

ing a direct method [2] for LiNGAM in each time of

bootstrapping.

4. We constructed confidence intervals of every element

in matrix B (except the elements in diagonal line) with

α = 0.05 by using multiple comparison approaches and

then checked whether zero falls inside the confidence

interval of each element in matrix B or not.

5. We repeated step 2 to 4 for 5000 times.

6. Let precision P be the ratio of the number of correctly

estimated nonzeros to the total number of estimated

nonzeros, recall R be the ratio of number of correctly

estimated nonzeros to the total number of real nonze-

ros. We calculated P, R, FWER, and computational

time of each approach.

The results are shown in Table 1. In the first experi-

ment, there is no nonzero element in matrix B, for this

reason, all values of P and R in this experiment become

N/A. From this table, we can see that the familywise error

rates, or FWER, of the naive method in both experiments

are greater than α. Meanwhile, with the use of multiple

comparison approaches, those of the Bonferroni correction

and Mandel’s approach are quite similar to each other and,

more importantly, become less than α.

However, in the step 2 of the Mandel’s approach, a se-

quence order of each bootstrap estimate is calculated by

using a linear search, which usually takes much longer com-

putational time as compared to the other two approaches

in both experiments. Therefore, we could say that the Bon-

ferroni correction is the most appropriate approach in this

experiment for the practical usage.

Simulations Naive Bonferroni Mandel

P N/A N/A N/A

1st R N/A N/A N/A

Experiment FWER 0.065 0.004 0.003

Time 3.832 3.516 2821.1

P 0.964 0.996 0.997

2nd R 0.865 0.826 0.805

Experiment FWER 0.205 0.030 0.030

Time 3.716 3.434 2849.3

Table 1: Precision, Recall, Familywise Error Rate, and com-

putational time (sec.) of each method in both experiments

with 5000 times

4. Conclusions

From this study, we could say that both Bonferroni cor-

rection and Mandel’s approach are able to control the fam-

ilywise error rate of the confidence intervals to be less than

the significance level in LiNGAM. Besides, the Bonferroni

correction could be considered as the most appropriate ap-

proach in this experiment for the practical usage because of

its short computational time.
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