劣モジュラ最適化に基づいたグラフ系列のクラスタリング

Clustering a Graph Sequence based on Submodular Function Optimization

岸本 卓也 Takuya KISHIMOTO

猪口 明博 Akihiro INOKUCHI 河原 吉伸 Yoshinobu KAWAHARA 鷲尾隆 Takashi WASHIO 1P2-lb-4in

大阪大学 産業科学研究所

The Institute of Scientific and Industrial Research, Osaka University

There are many real-world applications suitable to model objects by using graph sequences. For example, a human network is represented by a weighted graph where each human and each relationship between two humans correspond to a vertex and a weighted edge, respectively. If some relationships change in the human network, weights edges in the graph also change, resulting in a sequence of graphs. In this paper, we propose a method for clustering vertices in a graph sequence based on the submodular function optimization to discover changes of communities in it. In addition, we evaluate performance of the proposed method using artificial datasets.

1. はじめに

情報技術の発展により,膨大な量のデータを蓄積することが 可能となった.しかし,日々肥大化するデータは人間の理解力 を超えたため,有益な情報が含まれていてもそのままでは理解 できなくなっている.そこで,この膨大なデータから有益な情 報を発見するため,近年データマイニングに関する研究は非常 に注目され,盛んに研究されている.中でもクラスタリングは, 教師無し学習手法であるため,カテゴリが未知のデータを分類 するのに有用である.例えば,人間関係ネットワークのクラス タリングを行うことで,隠れたコミュニティの変化を発見する ことができ,マーケティング戦略などへ役立てることができる と考えられる.

本研究が対象とするグラフ系列マイニングでは,グラフ系列 を部分グラフ系列に分割する.例えば,人間関係ネットワーク において,人をグラフの頂点,人と人の関係をグラフの辺で表 し,その親密度に応じて辺を重み付けすると,ある時点の人間 関係ネットワークを重み付きグラフにより表現することができ る.さらに時間の経過と共にその構造が変化する人間関係ネッ トワークは,重み付きグラフの系列として表すことが可能であ る.このグラフ系列をクラスタリングすることにより,グラフ 系列に隠れた部分グラフの変化を発見することが期待される.

本稿では,劣モジュラ関数最適化に基づいたグラフ系列のク ラスタリング手法を提案した後,人工データに対して提案手法 を適用し,その結果について考察を行う.

2. グラフ系列のクラスタリング

2.1 重み付きグラフ系列

V を頂点集合, E を辺集合, w: E → R を辺から正の実数への関数とする. グラフのクラスタリング問題 [Von Luxburg 07] では一つの重み付きグラフ G = (V, E, w) を扱うが,本稿では グラフの時間変化を考えるために時刻 t の重み付きグラフを $G^{(t)} = (V, E, w')$ と表す.さらに,時間順に並べた T ステップ のグラフのリスト $G^{(1)}, \ldots, G^{(T)}$ を重み付きグラフ系列と呼び, 図 1 のようなグラフ系列扱う. ただし,本稿が対象とするグラ

図1 4ステップ重み付きグラフ系列の例.辺の重みは太さで 表されており,太い辺ほど大きな重み付けがされていることを 表す.

フ系列は以下の仮定を満たすものとする.

仮定 1: 連続する 2 つのグラフ $G^{(t)} \ge G^{(t+1)}$ ($1 \le t < T$) において対応する辺の重みの変化はわずかである.

例えば,人間関係ネットワークでは一度に大半の人間が入れ 替わることは無く,実世界の多くのグラフ変化はこの仮定を満 たしている.仮定1よりグラフの辺の重みの変化はわずかであ るので,G^(r)及びG^(r+1)において次節で定義するクラスタの変化 もわずかであると考えることができる.

仮定 2: グラフ $G^{(t)}$ $(1 \le t \le T)$ の頂点数 |V| を $n \ge 0$, グラフ系 列の中で n の値は変化しない.

実世界のグラフの頂点数は増減する場合もあるが,本稿では 問題の簡単化のためこの仮定をおく.

2.2 グラフ系列のクラスタリング問題 グラフ系列のクラスタリング問題を次のように定義する.

問題 1: グラフ系列 $G^{(1)}, \ldots, G^{(T)}$ とクラスタ数 k が入力として 与えられた時, グラフ構造の変化を考慮しコスト関数 F(P) を最 適化するクラスタリング解 P を求める.

ただし, $P = \{C_1, C_2, ..., C_k\}$ はクラスタ C_i $(1 \le i \le k)$ から成 る分割であり, $C_i = \{C_i^{(1)}, C_i^{(2)}, ..., C_i^{(T)}\}$ は各時刻のグラフのク ラスタ $C_i^{(t)}$ $(1 \le t \le T)$ から成り,時刻 t におけるグラフ $G^{(t)}$ の 頂点 V は,互いに交わりの無い k 個のクラスタ $C_i^{(t)}$ (i = 1, ..., k)に分割される.すなわち, $\bigcup_{i=1,...,k} C_i^{(t)} = V$ であり, $i \ne j$ に対し て $C_i^{(t)} \cap C_j^{(t)} = \emptyset$ である.また, F(P) は集合から実数への関数 であり,この問題は組み合わせ最適化問題である.

連絡先: 岸本 卓也, 大阪大学 産業科学研究所, 567-0047 大阪府 茨木市美穂ヶ丘 8-1, kishimoto@ar.sanken.osaka-u.ac.jp

図 2 図 1 のグラフ系列について k = 2 で問題 1 を解いた例. 時刻 t = 3 のグラフの黒い頂点はこのこのグラフのみをクラス タリングすると上のクラスタに分類されるが,前後の対応する クラスタの変化を考慮すると下のクラスタに分類される.

図1のグラフ系列について問題1を解くと,図2のようなクラスタを得る問題について考える.

3. 劣モジュラ関数

集合関数 $f: 2^V \rightarrow \mathbf{R}$ が,

$$f(S) + f(T) \ge f(S \cap T) + f(S \cup T) \ (S, T \subseteq V) \tag{1}$$

を満たす時,関数 f は劣モジュラ性を持つ,または f は劣モジュラ関数であるという[塩浦 10].また,式(1)は以下の式(2)と同義である.

$$f(S' \cup \{v\}) - f(S') \ge f(S \cup \{v\}) - f(S) \ (S' \subseteq S \subseteq V, v \notin S) \ (2)$$

離散領域における劣モジュラ関数最小化は,連続領域にお ける凸関数最小化に対応し[河原10],劣モジュラ関数最適化 問題の中では比較的簡単に局所解を得ることができ,また, Queyranneのアルゴリズム[Queyranne 95] や Minimum-Norm-Point [Fujishige 11] といった効率的なアルゴリズムが知られて いる.

提案手法

グラフ系列のクラスタリング問題を解くために必要となる, 膨大な組み合わせ演算による計算爆発を避けるため,効率的な 計算が可能となる劣モジュラ性を持つコスト関数を定義し,劣 モジュラ関数最適化アルゴリズムを利用してクラスタリング解 を得る手法を提案する.

4.1 コスト関数

4.1.1 各グラフの最適なクラスタリング

2.2 節で定義した問題に基づいて各時刻のグラフ $G^{(t)}$ をk個のクラスタに分割するためのコスト関数を $F_1(P)$ とする. $F_1(P)$ はカット関数 $cut(S) = \sum_e \{w(e) \mid e \in E(S, V \setminus S)\}$ $(S \subset V)$ の和で構成し,

$$F_1(P) = \sum_{t=1}^{T} \sum_{i=1}^{k} cut(C_i^{(t)})$$

と定義する.ただし, $E(S,V \setminus S)$ は一方の端点がSに含まれ, 他方の端点が $V \setminus S$ に含まれる辺の集合である.この関数の値 が小さくなるPに分割することで,頂点間の重みが互いに大き い頂点を同一のクラスタにまとめることができる.

4.1.2 連続する 2 グラフ間の変化

仮定1に基づいて連続する2つのグラフ間 $G^{(t)} \geq G^{(t+1)}$ で対応するクラスタの変化を考慮するためのコスト関数を $F_2(P)$ とする. $F_2(P)$ は時刻t及びt+1のクラスタリング結果を表す指

示行列の距離 $dist(A_i^{(t)}, A_i^{(t+1)}) = \sum_{v \in V} |a_{iv}^{(t+1)} - a_{iv}^{(t)}|$ で構成し,

$$F_2(P) = \sum_{t=1}^{T-1} \sum_{i=1}^k dist \left(A_i^{(t)}, A_i^{(t+1)} \right)$$

と定義する.ただし, $A_i^{(r)} = \left(a_{i1}^{(r)}a_{i2}^{(r)}\dots a_{ij}^{(r)}\right)$ は $G^{(r)}$ のi番目のクラスタの要素を表すベクトルであり, v_j をj番目の頂点 $(1 \le j \le n)$ とすると,

$$a_{ij}^{(t)} = \begin{cases} 1 & \text{if } v_j \in C_i^{(t)} \\ 0 & \text{if } v_j \notin C_i^{(t)} \end{cases}$$

である.この関数の値が小さくなる P に分割することで,時刻 によって異なるクラスタに分類される頂点を少なくすることが できる.

4.1.3 グラフ系列のコスト関数

以上のコスト関数をまとめて, グラフ系列のクラスタリング におけるコスト関数を $\alpha \ge 0$ をパラメータとして,

$$F(P) = F_1(P) + \alpha F_2(P)$$

と定義する. α を変化させることで, $F_1(P), F_2(P)$ のどちらに重きを置くかを調整することが可能である.

4.2 コスト関数の劣モジュラ性

図3 集合S',S,頂点v及び周辺の辺の関係

4.1 節で定義したコスト関数 F(P) が劣モジュラ関数で構成されることを示す.まず, $F_1(P)$ の cut について,図 3(a)のようなグラフで S', S, vを定めた時,

$$cut(S') = w(e_1) + w(e_5) + w(e_6)$$

$$cut(S' + \{v\}) = w(e_2) + w(e_3) + w(e_5) + w(e_6)$$

$$cut(S) = w(e_1) + w(e_2) + w(e_4) + w(e_6)$$

$$cut(S + \{v\}) = w(e_3) + w(e_4) + w(e_6)$$

となるので,

$$\begin{aligned} \{cut(S' \cup \{v\}) - cut(S')\} - \{cut(S \cup \{v\}) - cut(S)\} \\ &= (-w(e_1) + w(e_2) + w(e_3)) - (-w(e_1) - w(e_2) + w(e_3)) \\ &= 2w(e_2) \ge 0 \end{aligned}$$

となり,式(2)を満たすので *cut* は劣モジュラ関数であり, クラスタ *C*₁ 及び *C*₂ = *V* \ *C*₁ の 2 つに分割するコスト関数 $F'_1(C_1) = F_1(\{C_1, C_2\}) = \sum_{t=1}^{T} \sum_{i=1}^{2} cut(C_i^{(t)})$ は劣モジュラ関数である.

次に, $F_2(P)$ についてクラスタ C_1 及び $C_2 = V \setminus C_1$ の2つに分割するコスト関数 $F'_2(C_1) = F_2(\{C_1, C_2\}) =$

 $\sum_{t=1}^{T-1} \sum_{i=1}^{2} dist \left(A_{i}^{(t)}, A_{i}^{(t+1)} \right)$ を考える.指示行列を作成するとS', Sに対してそれぞれ以下に示す範囲

が1であるとし,時刻 tのグラフの頂点 $v \in S'$ またはS に加えた時,つまり $a_{1v}^{(t)} \in 0$ から1に変えた時,式(2)を満たすかどうかを確認する. $F'_2(S' \cup \{v\}) \ge F'_2(S')$ で値が変わるのは, $a_{vv}^{(t-1)}, a_{vv}^{(t)}, a_{vv}^{(t+1)}$ の間だけであるため,

$$\begin{aligned} F_2'(S' \cup \{v\}) &- F_2'(S') \\ &= \sum_{i=1}^2 \left\{ \left| a_{i\nu}^{(t)} - a_{i\nu}^{(t-1)} \right| + \left| a_{i\nu}^{(t+1)} - a_{i\nu}^{(t)} \right| \right\} \\ &= \left| a_{1\nu}^{(t)} - a_{1\nu}^{(t-1)} \right| + \left| a_{1\nu}^{(t+1)} - a_{1\nu}^{(t)} \right| + \left| a_{2\nu}^{(t)} - a_{2\nu}^{(t-1)} \right| + \left| a_{2\nu}^{(t+1)} - a_{2\nu}^{(t)} \right| \\ &= 1 + 1 + 1 + 1 = 4 \end{aligned}$$

となる . $F'_2(S \cup \{v\}) \ge F'_2(S)$ も値が変わるのは , $a_{iv}^{(t-1)}, a_{iv}^{(t)}, a_{iv}^{(t+1)}$ の間だけであるため , S' に関する計算と同様に $F'_2(S \cup \{v\}) - F'_2(S) = 4$ となる . 従って , $F'_2(S' \cup \{v\}) - F'_2(S') = F'_2(S \cup \{v\}) - F'_2(S)$ が成り立つため , $F'_2(C_1)$ はモジュラ関数である .

ここで,式(1)を満たす劣モジュラ関数 $f_1(S)$ 及び f(S)+ $f(T) = f(S \cap T) + f(S \cup T)$ を満たすモジュラ関数 $f_2(S)$ の線形 和 $f_3(S) = f_1(S) + f_2(S)$ について,

$$f_3(S) + f_3(T) = f_1(S) + f_1(T) + f_2(S) + f_2(T)$$

$$\geq f_1(S \cap T) + f_1(S \cup T) + f_2(S \cap T) + f_2(S \cup T)$$

$$= f_3(S \cap T) + f_3(S \cup T)$$

より,式(1)を満たすので, f₃(S)は劣モジュラ関数である.

従って,劣モジュラ関数とモジュラ関数の線形和は劣モジュ ラ関数となるため,関数 $F'(C_1) = F'_1(C_1) + F'_2(C_1)$ は劣モジュ ラ関数である. $F'(C_1)$ は2分割を行うコスト関数であるが, [Narasimhan 05]の Optimal *k*-clusterings と同様の手順を行うこ とで *k* 分割に拡張することが可能である.

5. 評価実験

4. 章で述べた提案手法を MATLAB で実装し,人工データ へ適用させて実験を行った.実験は,Intel Xeon CPU W3565 3.20GHz のプロセッサ,12GB のメインメモリ,Windows 7 Enterprise 64bit の OS,MATLAB 7.10.0(R2010a)の環境で行 い,計算時間及びエラー率を測定した.ただし,エラー率は <u>設分類された頂点数</u>により計算した.

5.1 劣モジュラ関数最適化アルゴリズム

本稿では劣モジュラ関数最適化アルゴリズムに Minimum-Norm-Point を用い, MATLAB Toolbox for Submodular Function Optimization (v 2.0)[Krause] において実装されている関数 sfo_min_norm_point を利用した.また, クラスタリングには同 じ MATLAB Toolbox の関数 sfo_greedy_splitting を利用してお り,この関数では k 分割を行うために 2 分割を繰り返し貪欲的 に分割する手法 [Zhao 05] が実装されている.

5.2 人工データ

人工データは次のように作成した.まず,混合ガウス分布の k = 3 個のガウス分布の平均を,原点中心,半径r = 4の円周 上に等間隔に配置した.また,時刻ステップを経る毎に各平均 が原点に近づいたり離れたりするようにして混合ガウス分布を 生成した.分散 var = 1.0, n/k 個の要素から成る各ガウス分布 が一つのクラスタに対応し,その中心は初期位相 $\varphi = 0$,振幅 A = 1.0,周期 $p = \pi/4$ で正弦的に振動する.なお,頂点数nの 既定値は24 個である.このようにして生成した各時刻の頂点座 標を用いて,2頂点間のユークリッド距離の逆数を辺の重みと し,時刻ステップ数T = 8のグラフ系列を生成した.

5.3 実験結果

以下の全ての実験において α の値は {22.4, 25.1, 28.2, 31.6} に 変化させて計測した.

図4,5は振幅Aを0から4まで増加させた時の計算時間及 びエラー率である、半径r=4であるため,振幅が4に近づく に従ってクラスタが原点に近づいた時に他のクラスタと交差す る可能性が高くなり,クラスタが交差するグラフの個数も増加 するため,エラー率が上昇している.

図 6,7 はクラスタ数 $k \ge 2$ から 8 まで増加させた時の計算時 間及びエラー率である. 貪欲的に k 分割する手法を用いている ため,計算時間はクラスタ数に対して線形に増加している.エ ラー率は全体的にはクラスタ数を増加させるに従い減少する傾 向となっているが,k = 2 において最小となっている.これは, k = 2 においては誤った分類がなされた時,分類される他のクラ スタの候補が一つしか無いためである.

図 8,9 は半径 r を 0.1 から 15.9 まで増加させた時の計算時 間及びエラー率である.振幅 A = 1 であるため,r = 1 を超える と異なるクラスタ同士が交差する可能性が下がり,分割しやす くなるため誤分類される頂点が減り,エラー率が減少し始めて いる.

図 10,11 は時刻ステップ数 T を 4 から 20 まで増加させた時 の計算時間及びエラー率である.グラフ系列のクラスタリング では,nT 個の頂点のクラスタリングを試行する必要がある上, プログラム内部のループ処理もT に比例してループ回数が増加

of timesteps 図 11 時刻ステップ数に対す るエラー率の変化

するため,計算時間が指数的に増加している.また,人工デー タの各クラスタの中心は正弦的に振動するため,時刻ステップ 数が増えるとクラスタの時間変化を制御するコスト関数 F₂の 影響が大きくなるため,誤分類される頂点が減り,エラー率が 減少している.

図 10 時刻ステップ数に対す

る計算時間の変化

図 12,13 は頂点数 n を 12 から 54 まで増加させた時の計算 時間及びエラー率である.先にも述べたとおり,nT 個の頂点の クラスタリングを試行する必要があるため,n が増加すると計 算時間は線形に増加している.一方で頂点数を増やしても他の パラメーターによって決まる頂点の分布やクラスタ同士の交差 具合は変化しないため,エラー率はほとんど変わらない.

図 14,15 は分散 var を 0.1 から 1.9 まで増加させた時の計算 時間及びエラー率である.分散を増加させると頂点が各クラス タの中心から離れた位置に散在しやすくなり,異なるクラスタ 同士が交差する可能性が増えるため分割が難しくなり,エラー 率及び計算時間は共に増加している.

以上の全ての結果について α の値の変化による違いに注目す ると,計算時間に対しては α の値を変化させても同じような傾 向を示しているが,エラー率については時折他と異なる値を示 している点がある.これは,全てのパラメーターの組み合わせ 毎に最適な α の値が存在するが,その値を求めることはできな いため,必ずしも良い α で実験できていないためである.

6. まとめ

本稿では,劣モジュラ関数最適化に基づいたグラフ系列のク ラスタリング手法を提案し,人工データを用いてその評価実験 を行った.劣モジュラ関数は局所解を比較的簡単に求めること ができ,最適化には既存の効率的なアルゴリズムを利用可能で あることから,提案手法はそのコスト関数が劣モジュラ性を持 つように定義した.

人工データによる実験において,計算時間は主にクラスタ数, 時刻ステップ数,及び頂点数の増加に従って長くなり,特に時 刻ステップ数に対しては指数的に増加しており計算時間に与え る影響が大きい.従って,今後この改善が課題であり,また,人 工データだけではなく実データによる手法の評価を行う必要が ある.

参考文献

- [Fujishige 11] Fujishige, S. and Isotani, S.: A Submodular Function Minimization Algorithm Based on the Minimum-Norm Base, *Pacific Journal of Optimization*, Vol. 7, pp. 3–17 (2011)
- [Krause] Krause, R. A.: Matlab Toolbox for Submodular Function Optimization, http://www.cs.caltech.edu/ ~krausea/sfo/
- [Narasimhan 05] Narasimhan, M., Jojic, N., and Bilmes, J.: Q-Clustering, Advances in Neural Information Processing Systems 18 (2005)
- [Queyranne 95] Queyranne, M.: A combinatorial algorithm for minimizing symmetric submodular functions, in *Proceedings* of the sixth annual ACM-SIAM symposium on Discrete algorithms, SODA '95, pp. 98–101, Philadelphia, PA, USA (1995), Society for Industrial and Applied Mathematics
- [Von Luxburg 07] Von Luxburg, U.: A tutorial on spectral clustering, *Statistics and Computing*, Vol. 17, No. 4, pp. 395–416 (2007)
- [Zhao 05] Zhao, L., Nagamochi, H., and Ibaraki, T.: Greedy splitting algorithms for approximating multiway partition problems, *Math. Programming*, Vol. 102, pp. 102–167 (2005)
- [塩浦 10] 塩 浦 昭 義:劣 モ ジュラ 関 数 の 最 大 化, http://www.kurims.kyoto-u.ac.jp/~takazawa/ coss2010/shioura-1.pdf (2010)
- [河原 10] 河原 吉伸:機械学習における劣モジュラ性の 利用, http://www.nec.co.jp/rd/datamining/project/ nec_datamining_seminar8.pdf (2010)