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This paper investigates non-monotone dualization (NMD) of general Boolean functions from the viewpoint of
monotone dualization (MD). MD is one of the few problems whose tractability status is still unknown, and thus
has received much attention that yields many remarkable algorithms. In contrast, NMD has not been much worked
as yet, since an easy reduction from SAT problems gives NP-hardness. In this paper, we show that any NMD can
be reducing to two equivalent MD problems. This feature enables us to provide a new solution for NMD based on

the state-of-the-art MD computation.

1.

The problem ofhon-monotone dualizatiofNMD) is to gener-
ate an irredundant prime CNF formujaof the dualf® where f
is ageneralBoolean function represented by CNF [Eiter 03]. The
DNF formula¢ of f¢ is easily obtained by De Morgan’s laws in-
terchanging the connectives of the CNF formula. Hence, the main
task of NMD is to convert the DNB to an equivalent CNk.

NMD has been continuously studied in computer science
[Miltersen 05] and is used in several application domains, such as
learning theory [DeRaedt 97] and logical design [Friedman 86], in
order to seek an alternative representation of the input form. For
instance, by converting a given CNF formula into DNF, we ob-
tain the models satisfying the CNF formula. This fact shows an
easy reduction from SAT problems to NMD, and also conjectures

Introduction

Example 1 Leta CNF formulap be (z1 Va2)A(TzVas). If

we treat negated variables as regular variables, we can apply
MD to ¢ and obtain the CNF formular = (x1 V T3) A

(z1 Vas) A (z2 VT2) A (22 V x3). HOweverg) contains the
tautologyz2 V 7z and the resolvent; V z3 of 1 V 72 and

z2 V 23, Which are to be removed.

e Unlike MD, the output of NMD isnot necessarilyunique
The literature [Rymon 94] shows that the output of MD
uniquely corresponds to the set of all the prime implicates
of 2. In contrast, some prime implicates can be redundant
in NMD problems. Thus, the output of NMD corresponds
to an irredundant subset of the prime implicates. However,
such a subset is not unique in general.

the hardness of it [Eiter 02]. In this context, the research has been For the first problem, we show a technique to prohibit any resol-

focused on some restricted classes of Boolean functions.
Monotone dualizatio{MD) is one such class that deals with
monotonefunctions for which CNF formulas are negation-free
[Eiter 08, Hagen 08]. MD is one of the few problems whose
tractability status with respect to polynomial-total time is still un-
known. Besides, it is known that MD has many equivalent prob-

lems in discrete mathematics, such as the minimal hitting set enu- ¢+

vents from being generated in MD computation. This is done by
simply adding some tautologies to the input CNF formpiia ad-
vance. We denote by, andv); the extended input formula and its
output by MD, respectively. Them;; contains no resolvents.

Example 2 Recall Example 1. We consider the CNF formula
(z1 V x2) A (T2 V 23) A (2 V T2) obtained by adding

meration. Thus, this class has received much attention that yields one tautology which consists of two complementary litetads

remarkable algorithms: in terms of complexity, the literature
[Fredman 96] shows that this is solvable in a quasi-polynomial-
total time (i.e.,(n + m)°(°9 ("+™) wheren andm denote the
input and output size, respectively). Uno [Uno 02] shows a practi-
cal fast algorithm whose average computation time is experimen-
tally O(n) per output, for randomly generated instances.

This paper aims at clarifying whether or not NMD can be solved
using these techniques of MD, and if it can be then how it is real-
ized. In general, it is not straightforward to use them because of
the following two problems in NMD:

o NMD has to treatedundant clausekke resolvents and tau-
tologies.
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andz; that appear inp. Then, MD generates the CNF formula
Yy = (21 VT2) A (x2 VT2) A (22 V x3). Indeed,yp, does not
contain the resolvent; V x3, unlike .

By removing all tautologies from);, we obtain an irredundant
CNF formula, denoted by);.. Note that in Example 2y;, is
(ZB1 \/TQ) A (1'2 Vv xg).

We next address the second problem using a good property of
1ir: @ subset of the prime implicates is irredundant (i.e., an output
by NMD) if and only if it subsumes);,. but never subsumeg;,
if any clause is removed from it. This particular relation is called
minimal subsumptianWe then show that the task of computing
those subsets which satisfy the minimal subsumption is also a MD
problem. In this way, we reduce a given NMD problem into two
MD problems: the one for computing;.., and the other for com-
puting those subsets corresponding to the outputs by NMD. This
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reduction technigue enables us to provide a new solution for NMD
based on the state-of-the-art MD computation.
Due to space limitations, full proofs are omitted in this paper.

2. Background

2.1 Preliminaries

A Boolean functioris a mappingf : {0,1}" — {0,1}. We
write g = f if f andg satisfyg(v) < f(v) for allv € {0,1}"™.
g is (logically) equivalentio f, denoted by = f, if ¢ = f and
f E g. Afunction f is monotonef v < w implies f(v) < f(w)
for all v,w € {0,1}"; otherwise it isnon-monotone Boolean
variablesz, xs, ..., z, and their negationg1,z3,...,T, are
calledliterals. Thedual of a functionf, denoted b)g‘d, is defined
asf(z) wheref andz is the negation of andz, respectively.

A clause(resp. term is a disjunction fesp. conjunction) of
literals which is often identified with the set of its literals. It is
known that a clause igutologyif it contains complementary lit-
erals. LetC, andC be clauses, anfl; and L literals inC; and
Cs, respectively. IfL; andL, are complementary literals, then the
clause(Cy — {L1}) U (Cz — {L2}) is called theresolventof C;
andCs. A clauseC is animplicateof a functionf if f = C. An
implicateC is primeif there is no implicate”’ such thatC’ c C.

A conjunctive normal forr{CNF) (resp. disjunctive normal
form (DNF)) formula is a conjunction of clausese¢p. disjunc-
tion of terms) which is often identified with the set of clauses
in it. In the following, we represent CNF or DNF formulas
by the set notation for simplicity, if no confusion arises. A
CNF formula ¢ is irredundantif ¢ # ¢ — {C} for every
clauseC' in ¢; otherwise it isredundant ¢ is prime if ev-
ery clause ing is a prime implicate ofp; otherwise it isnon-
prime Let ¢ be {{z1, =2}, {Z2, z3}, {z1, z3}} andp. be
{{z1, z2}, {T2, z1}}. On the one handy, is prime but re-
dundant, since the last clause is the resolvent of the others. On
the other handg, is irredundant but non-prime, since there is an
implicate{z1 } of ¢, that is a subset ofz1, z-}.

Let ¢1 andg, be two CNF formulas¢; subsumes., denoted
by ¢1 = ¢2, if there is a claus€ € ¢, such thatC' C D for
every clausé € ¢-. In turn,¢1 minimally subsumesg., denoted
by ¢1 =% @2, if ¢1 subsumesg, butg, — {C'} does not subsume
¢ for every clause” € ¢;.

Let ¢ be a CNF formula.u(¢) denotes the CNF formula ob-
tained by removing every redundant clauseithat is included in
another clauser(¢) denotes the CNF formula obtained by remov-
ing all tautologies fromp. We sayy is tautology-freef ¢ = 7(¢).

Now, we formally define the dualization problem as follows.

Definition 1 (Dualization problem)

Input: A tautology-free CNF formula

Output: An irredundant prime CNF formulasuch that
1 is logically equivalent tay?.

We call itmonotone dualizatio(MD) if ¢ is negation-free; other-
wise itis callecdhon-monotone dualizatigfNMD). As well known
[Eiter 08], the task of MD is equivalent to enumerating thii-
mal hitting set{MHSs) of a family of sets, as described next.

2.2 MD as MHS enumeration
We first introduce the notion of minimal hitting sets.

Definition 2 ((Minimal) Hitting set) Let II be a finite set andF
be a subset family ofl. A finite setE is ahitting setof F if for
everyF € F, ENF # (. Afinite setFE is aminimal hitting set
(MHS) of F if E satisfies the following two conditions:

1. Eis a hitting set ofF;

2. For every subseE’ C E, if E' is a hitting set ofF, then
E' =FE.

Note here that any CNF formulacan be identified with the family

of clauses inp. Accordingly, we can consider the CNF formula
that is the conjunction of all the MHSs of the family We denote
itby M (¢). The literature [Rymon 94] shows a propertyMf(¢),
which describes the relation between MD and MHS computation.

Theorem 1 [Rymon 94] Let¢ be a tautology-free CNF formula.
A clauseC'is in 7(M(¢)) if and only if C' is a non-tautological
prime implicate ofp?.

In the case of MD, we do not need to consider any redundant
clauses like tautologies and resolvents, since the input forghula
contains no negations. Thus, the output of MD is the CNF formula
consisting of all the prime implicates @f', which corresponds to
7(M(¢)) by Theorem 1.

We next introduce a practical fast algorithm for computing
7(M(#)) [Uno 02]. This algorithm is based dnverse search
which uses so-callegharent-child relationshipto structure the
search space as a rooted-tree. This tree is calleshameration
tree Using the enumeration tree, the algorithm searches for so-
lutions (i.e., the non-tautological minimal hitting sets#f with
the depth-first search strategy. The following figdreketches it
briefly [Satoh 02].

Global ¢, = {C4,...
computéi, mhs, S)
[*mhs is an MHS ofg; (1 < i < n).
S is the family of MHSs of,,.*/
Begin
if i = nthen addmhs to S and return;
else ifmhs is an MHS of¢, 41
docomputéi + 1, mhs, S);
elsevVe € Ci41 s.t. mhs U {e} is a non tautological
MHS of ¢;+1 (1) docomputéi + 1, mhs U {e}, S);
outputS and return;
End

70’”}

1)

O 1: Uno's algorithm for computing (M (¢y))

In other words, this algorithm incrementally searches for an MHS
of the next family¢,+1 from the current MHS obtained for the
family ¢;,. We once again emphasize that its average computa-
tion for randomly generated instances is experimentally) per
output, wheren is the input size.

2.3 NMD as MHS enumeration

Our motivation is to clarify whether or not NMD can be solved
using MD techniques. While MD is done by the state-of-the-art
enumeration algorithm, it is not straightforward to use this for

*1  Since the original version is used for computibff¢), we modify it
so as to remove the tautologiesMi(¢) by way of the condition (1).



The 25th Annual Conference of the Japanese Society for Atrtificial Intelligence, 2011

NMD. Here, we review the two problems explained before in the
context of MHS enumeration.

1. Appearance of redundant clauses(M (¢)) is prime but not
necessarily irredundant.

Example 3 Recall the CNFp2 = {{z1, 22}, {Z2, z3}} of Ex-
ample 1. Figure 2 describes the enumeration treepfowhere
each node is labeled by a pdii, F;). This pair means that a
set E; is an MHS of¢,;. By the enumeration tree, we obtain
T(M(¢2)) = {{1‘1, 3772}, {171, x3}, {xg7 1‘3}} However, this
contains the redundant clauge:, z3}.

©, {3
(A, {x;}) (1, {x2})
2, X)) (2, 8% X3h)  —R7bs- (2, {xo X3})

Tautology

O 2: Enumeration tree fapo
2. Non-uniqueness of NMD solutianghere are many subsets of
7(M(¢)) that are prime and irredundant.

Example 4 Let the input CNF formula be as follows:

¢ = {{z1, T2, T3}, {T1, x2, 23}}.
7(M(¢)) consists of the non-tautological prime implicates:

T(M(¢))

{{.T1, xQ}» {xilv TS}H {TQ, 553}7

{z1, z3}, {71, T2}, {73, 22} }.

©. {3
(1, {x2})

N\

“2-50= (2, {x,, X3})

Tautology

(3, {x1, 30} Bbexgxd) B

Non-minimal Non-minimal

(1, &b

N\

(2, (%) (2, {4, X3})

(3, {x2 x5}

O 3: Enumeration tree fap, U T'aut(p2)

Example 5 Recall¢o = {{z1, z2},{T2, z3}} in Example 3.

Taut(¢2) is {2 V T2}. Figure 3 describes the enumeration
tree for g2 U Taut(¢2). From this tree, the bottom formula is
{{z1, T2}, {x2, z3}}. Indeed, itis irredundant, since it does not

contain the resolverftr1, x3}.

In terms of the first problem, Theorem 2 shows a remarkable role
of adding tautologies that prohibits any redundant clauses from be-
ing generated in MD computation. Note here that Theorem 2 en-
sures that the bottom formula is irredundant, but it does not ensure
it is prime.

Example 6 Recall the CNF formulap in Example 4. T'aut(¢)
is {{z1, Z1}, {x2, T2}, {23, T3}}. The bottom formula is as
follows:

{{mlv 2, $3}7 {Ev €2, x1}7{xi33 T2, :1771}7
{E7 s, .’L’1}, {TQ> .’Eg,l'il}, {E: x3, ﬂ}}
We write C1, Cs, . .., Cs for the above clauses in turn (i.€2 is

{7z, =3, z1}). We then notice that the bottom formula is non-
prime, because it contains a non-prime implic&tewhose subset

Then, we may notice that there are at least two irredundant subsets{z:, z2} is an implicate of“.

of 7(M(¢)):

Y1 = {{x1, x2}, {71, T3}, {72, 23}}.
Vo = {{z1, w3}, {Z1, T2}, {T3, w2}}.

Note thaty), is logically equivalent ta)s, and thus both are also
equivalent tor (M (¢)) itself.

To address the two problems, this paper focuses on the following
CNF formula.

Definition 3 (Bottom formula) Let ¢ be a tautology-free CNF
formula andl"aut(¢) the following set of tautologies:

Taut(¢p) ={x VT | ¢ contains both z and T }.
Then, thebottom formula wrtp (in short, bottom formula) is de-

fined as the CNF formula(M (¢ U T'aut(¢))).

3. Properties of bottom formulas

Now, we show two properties of bottom formulas.

Theorem 2 Let ¢ be a tautology-free CNF formula. Then, the
bottom formula wrip is irredundant.

As shown in Example 6, the bottom formula itself is not necessar-
ily an output by NMD. However, every NMD output is logically
connected with this formula.

Theorem 3 Let ¢ be a tautology-free CNF formula. Then, is
an output by NMD for¢ if and only if v C 7(M(¢)) and¢
minimally subsumes the bottom formula wgrt

Example 7 Recall Example 4 and Example 6. Figure 4 describes
the subsumption lattice bounded by two irredundant prime out-
putse: andy, and the bottom formuldCi, Cs, ..., Cs}. The
solid (resp. dotted) lines show the subsumption relation between
1 (resp. ¢2) and the bottom formula. We then notice that both
outputsy1 and¢e minimally subsume the bottom formula.

4. Reducing NMD to MD

Theorem 3 shows that every NMD outpytcan be generated
by selecting a subset of (M (¢)) that minimally subsumes the
bottom formula. Now, we show that the task of this selection is
done by MD computation.

Let the bottom formula béC1, Cs, ..., C,}. We then de-
note by S; (1 < ¢ < n) the set of clauses in(M(¢)) each
of which is a subset of’;. F, denotes the family of those sets
{S1,52,...,5n}.
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(x5 xap (X7, X3} {2 X3} {x4, x5} {Y: X5}
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{x3 x5}
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Bottom formula

O 4: Subsumption lattice bounded by NMD outputs and the bot-
tom formula

Theorem 4 Let ¢ be a tautology-free CNF formula) is an out-
put by NMD for ¢ if and only if ¢ is an MHS ofF.

Example 8 Recall Example 7. We denote each claus@pfand
12 in Figure 4 byD1, ..., Ds, starting from left to right (i.e.D4
is {z1, xz3}). Then,F, is as follows:

Fo ={{D1, Da}, {D1, D¢}, {D2, De},
{Ds, D4}, {Ds, Ds}, {D2, Ds}}.

By MHS computation, we have the five MHSs 5},

{D1, D2, D3},{D4, Ds, D¢},{D1, D2, D4, Ds},
{D1, D3, Ds, D¢}, {D2, D3, Da, D¢}

They contain two MHS$ D1, D2, Ds} and{ D4, Ds, D¢} that
correspond to NMD outputs; andi)., respectively.

Both the bottom theory and(M(¢)) are obtained by one MD

computation. Furthermore, Theorem 4 shows that the task of se-

lecting irredundant subsets is also done by another MD compu-
tation. In summary, the NMD problem of a tautology-free CNF
formula ¢ can be reconstructed into two MD problems: one for
computing the bottom theory wet andr(M ¢), and the other for
computing an MHS ofF.

5. Conclusion and future work

This paper have presented a technique for dualizing non-
monotone Boolean functions by monotone dualization computa-
tion. Previous works revealed that monotone dualization is solv-
able in a quasi-polynomial-total time, and efficient algorithms for

it and its related problems have been proposed. In this context, our

result gives an insight to use those efficient algorithms of mono-

tone dualization for non-monotone cases. The main result is de-

scribed in Theorem 3 that the bottom formula minimally subsumes

every output. Based on this result, we reduce any non-monotone

dualization problem to two monotone dualization problems. We
emphasize that the result enables us to genesae/output that

makes possible to find the most compact solution. Our result also

enables us to investigate the complexity of NMD from the view-
point of MD computation. For instance, the complexity of gener-
ating every NMD output can be described as follows:

(n+ k)o(log (n+k)) + (k+ m)O(log (kvLM))7

wheren, k andm are the sizes of the input formuda the bottom
formula wrt ¢ and all the NMD outputs. This is simply derived
from the complexity of MD computation [Fredman 96].

A further investigation on previously proposed methods of
NMD is an important future work. Whereas this paper provides
a solution for NMD using MD computation, it is necessary to clar-
ify the significance of our technique with respect to improvement
of previous bounds and applicability to practical problems. Sum-
maries of the state-of-the-art NMD and comparisons with them
will make our contribution clearer.
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