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一般双対化問題における冗長節生成の抑止法とその評価
On Reducing Non-Monotone Dualization to Monotone Dualization
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This paper investigates non-monotone dualization (NMD) of general Boolean functions from the viewpoint of
monotone dualization (MD). MD is one of the few problems whose tractability status is still unknown, and thus
has received much attention that yields many remarkable algorithms. In contrast, NMD has not been much worked
as yet, since an easy reduction from SAT problems gives NP-hardness. In this paper, we show that any NMD can
be reducing to two equivalent MD problems. This feature enables us to provide a new solution for NMD based on
the state-of-the-art MD computation.

1. Introduction

The problem ofnon-monotone dualization(NMD) is to gener-
ate an irredundant prime CNF formulaψ of the dualfd wheref

is ageneralBoolean function represented by CNF [Eiter 03]. The
DNF formulaφ of fd is easily obtained by De Morgan’s laws in-
terchanging the connectives of the CNF formula. Hence, the main
task of NMD is to convert the DNFφ to an equivalent CNFψ.

NMD has been continuously studied in computer science
[Miltersen 05] and is used in several application domains, such as
learning theory [DeRaedt 97] and logical design [Friedman 86], in
order to seek an alternative representation of the input form. For
instance, by converting a given CNF formula into DNF, we ob-
tain the models satisfying the CNF formula. This fact shows an
easy reduction from SAT problems to NMD, and also conjectures
the hardness of it [Eiter 02]. In this context, the research has been
focused on some restricted classes of Boolean functions.

Monotone dualization(MD) is one such class that deals with
monotonefunctions for which CNF formulas are negation-free
[Eiter 08, Hagen 08]. MD is one of the few problems whose
tractability status with respect to polynomial-total time is still un-
known. Besides, it is known that MD has many equivalent prob-
lems in discrete mathematics, such as the minimal hitting set enu-
meration. Thus, this class has received much attention that yields
remarkable algorithms: in terms of complexity, the literature
[Fredman 96] shows that this is solvable in a quasi-polynomial-
total time (i.e.,(n + m)O(log (n+m)) wheren andm denote the
input and output size, respectively). Uno [Uno 02] shows a practi-
cal fast algorithm whose average computation time is experimen-
tally O(n) per output, for randomly generated instances.

This paper aims at clarifying whether or not NMD can be solved
using these techniques of MD, and if it can be then how it is real-
ized. In general, it is not straightforward to use them because of
the following two problems in NMD:

• NMD has to treatredundant clauseslike resolvents and tau-
tologies.
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Example 1 Let a CNF formulaφ be(x1∨x2)∧(x2∨x3). If
we treat negated variables as regular variables, we can apply
MD to φ and obtain the CNF formulaψ = (x1 ∨ x2) ∧
(x1 ∨x3)∧ (x2 ∨x2)∧ (x2 ∨ x3). However,ψ contains the
tautologyx2 ∨ x2 and the resolventx1 ∨ x3 of x1 ∨ x2 and
x2 ∨ x3, which are to be removed.

• Unlike MD, the output of NMD isnot necessarilyunique.
The literature [Rymon 94] shows that the output of MD
uniquely corresponds to the set of all the prime implicates
of fd. In contrast, some prime implicates can be redundant
in NMD problems. Thus, the output of NMD corresponds
to an irredundant subset of the prime implicates. However,
such a subset is not unique in general.

For the first problem, we show a technique to prohibit any resol-
vents from being generated in MD computation. This is done by
simply adding some tautologies to the input CNF formulaφ in ad-
vance. We denote byφt andψt the extended input formula and its
output by MD, respectively. Then,ψt contains no resolvents.

Example 2 Recall Example 1. We consider the CNF formula
φt = (x1 ∨ x2) ∧ (x2 ∨ x3) ∧ (x2 ∨ x2) obtained by adding
one tautology which consists of two complementary literalsx2

andx2 that appear inφ. Then, MD generates the CNF formula
ψt = (x1 ∨ x2) ∧ (x2 ∨ x2) ∧ (x2 ∨ x3). Indeed,ψt does not
contain the resolventx1 ∨ x3, unlikeψ.

By removing all tautologies fromψt, we obtain an irredundant
CNF formula, denoted byψir. Note that in Example 2,ψir is
(x1 ∨ x2) ∧ (x2 ∨ x3).

We next address the second problem using a good property of
ψir: a subset of the prime implicates is irredundant (i.e., an output
by NMD) if and only if it subsumesψir but never subsumesψir

if any clause is removed from it. This particular relation is called
minimal subsumption. We then show that the task of computing
those subsets which satisfy the minimal subsumption is also a MD
problem. In this way, we reduce a given NMD problem into two
MD problems: the one for computingψir, and the other for com-
puting those subsets corresponding to the outputs by NMD. This
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reduction technique enables us to provide a new solution for NMD
based on the state-of-the-art MD computation.

Due to space limitations, full proofs are omitted in this paper.

2. Background

2.1 Preliminaries
A Boolean functionis a mappingf : {0, 1}n → {0, 1}. We

write g |= f if f andg satisfyg(v) ≤ f(v) for all v ∈ {0, 1}n.
g is (logically) equivalentto f , denoted byg ≡ f , if g |= f and
f |= g. A functionf is monotoneif v ≤ w impliesf(v) ≤ f(w)

for all v, w ∈ {0, 1}n; otherwise it isnon-monotone. Boolean
variablesx1, x2, . . . , xn and their negationsx1, x2, . . . , xn are
calledliterals. Thedualof a functionf , denoted byfd, is defined
asf(x) wheref andx is the negation off andx, respectively.

A clause(resp. term) is a disjunction (resp. conjunction) of
literals which is often identified with the set of its literals. It is
known that a clause istautologyif it contains complementary lit-
erals. LetC1 andC2 be clauses, andL1 andL2 literals inC1 and
C2, respectively. IfL1 andL2 are complementary literals, then the
clause(C1 − {L1}) ∪ (C2 − {L2}) is called theresolventof C1

andC2. A clauseC is animplicateof a functionf if f |= C. An
implicateC is prime if there is no implicateC′ such thatC′ ⊂ C.

A conjunctive normal form(CNF) (resp. disjunctive normal
form (DNF)) formula is a conjunction of clauses (resp. disjunc-
tion of terms) which is often identified with the set of clauses
in it. In the following, we represent CNF or DNF formulas
by the set notation for simplicity, if no confusion arises. A
CNF formula φ is irredundant if φ 6≡ φ − {C} for every
clauseC in φ; otherwise it isredundant. φ is prime if ev-
ery clause inφ is a prime implicate ofφ; otherwise it isnon-
prime. Let φ1 be {{x1, x2}, {x2, x3}, {x1, x3}} andφ2 be
{{x1, x2}, {x2, x1}}. On the one hand,φ1 is prime but re-
dundant, since the last clause is the resolvent of the others. On
the other hand,φ2 is irredundant but non-prime, since there is an
implicate{x1} of φ2 that is a subset of{x1, x2}.

Let φ1 andφ2 be two CNF formulas.φ1 subsumesφ2, denoted
by φ1 º φ2, if there is a clauseC ∈ φ1 such thatC ⊆ D for
every clauseD ∈ φ2. In turn,φ1 minimally subsumesφ2, denoted
by φ1 º\ φ2, if φ1 subsumesφ2 butφ1 − {C} does not subsume
φ2 for every clauseC ∈ φ1.

Let φ be a CNF formula.µ(φ) denotes the CNF formula ob-
tained by removing every redundant clause inφ that is included in
another clause.τ(φ) denotes the CNF formula obtained by remov-
ing all tautologies fromφ. We sayφ is tautology-freeif φ = τ(φ).

Now, we formally define the dualization problem as follows.

Definition 1 (Dualization problem)
Input: A tautology-free CNF formulaφ
Output: An irredundant prime CNF formulaψ such that

ψ is logically equivalent toφd.

We call it monotone dualization(MD) if φ is negation-free; other-
wise it is callednon-monotone dualization(NMD). As well known
[Eiter 08], the task of MD is equivalent to enumerating themini-
mal hitting sets(MHSs) of a family of sets, as described next.

2.2 MD as MHS enumeration
We first introduce the notion of minimal hitting sets.

Definition 2 ((Minimal) Hitting set) Let Π be a finite set andF
be a subset family ofΠ. A finite setE is ahitting setof F if for
everyF ∈ F , E ∩ F 6= ∅. A finite setE is aminimal hitting set
(MHS) of F if E satisfies the following two conditions:

1. E is a hitting set ofF ;

2. For every subsetE′ ⊆ E, if E′ is a hitting set ofF , then
E′ = E.

Note here that any CNF formulaφ can be identified with the family
of clauses inφ. Accordingly, we can consider the CNF formula
that is the conjunction of all the MHSs of the familyφ. We denote
it by M(φ). The literature [Rymon 94] shows a property ofM(φ),
which describes the relation between MD and MHS computation.

Theorem 1 [Rymon 94] Letφ be a tautology-free CNF formula.
A clauseC is in τ(M(φ)) if and only if C is a non-tautological
prime implicate ofφd.

In the case of MD, we do not need to consider any redundant
clauses like tautologies and resolvents, since the input formulaφ

contains no negations. Thus, the output of MD is the CNF formula
consisting of all the prime implicates ofφd, which corresponds to
τ(M(φ)) by Theorem 1.

We next introduce a practical fast algorithm for computing
τ(M(φ)) [Uno 02]. This algorithm is based oninverse search,
which uses so-calledparent-child relationshipto structure the
search space as a rooted-tree. This tree is called anenumeration
tree. Using the enumeration tree, the algorithm searches for so-
lutions (i.e., the non-tautological minimal hitting sets ofφ) with
the depth-first search strategy. The following figure∗1 sketches it
briefly [Satoh 02].

Global φn = {C1, . . . , Cn}
compute(i, mhs, S)
/*mhs is an MHS ofφi (1 ≤ i ≤ n).
S is the family of MHSs ofφn.*/
Begin
if i = n then addmhs to S and return;
else ifmhs is an MHS ofφi+1

docompute(i + 1, mhs, S);
else∀e ∈ Ci+1 s.t.mhs ∪ {e} is a non tautological (1)

MHS of φi+1 (1) docompute(i + 1, mhs ∪ {e}, S);
outputS and return;
End

図 1: Uno’s algorithm for computingτ(M(φn))

In other words, this algorithm incrementally searches for an MHS
of the next familyφi+1 from the current MHS obtained for the
family φi. We once again emphasize that its average computa-
tion for randomly generated instances is experimentallyO(n) per
output, wheren is the input size.

2.3 NMD as MHS enumeration
Our motivation is to clarify whether or not NMD can be solved

using MD techniques. While MD is done by the state-of-the-art
enumeration algorithm, it is not straightforward to use this for

∗1 Since the original version is used for computingM(φ), we modify it
so as to remove the tautologies inM(φ) by way of the condition (1).
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NMD. Here, we review the two problems explained before in the
context of MHS enumeration.
1. Appearance of redundant clauses: τ(M(φ)) is prime but not
necessarily irredundant.

Example 3 Recall the CNFφ2 = {{x1, x2}, {x2, x3}} of Ex-
ample 1. Figure 2 describes the enumeration tree forφ2 where
each node is labeled by a pair(i, Ei). This pair means that a
set Ei is an MHS ofφi. By the enumeration tree, we obtain
τ(M(φ2)) = {{x1, x2}, {x1, x3}, {x2, x3}}. However, this
contains the redundant clause{x1, x3}.

(0, {})

(1, {x1})

(2, {x1, x2})

(1, {x2})

(2, {x1, x3}) (2, {x2, x2}) (2, {x2, x3})
Tautology

図 2: Enumeration tree forφ2

2. Non-uniqueness of NMD solutions: there are many subsets of
τ(M(φ)) that are prime and irredundant.

Example 4 Let the input CNF formulaφ be as follows:

φ = {{x1, x2, x3}, {x1, x2, x3}}.

τ(M(φ)) consists of the non-tautological prime implicates:

τ(M(φ)) = {{x1, x2}, {x1, x3}, {x2, x3},
{x1, x3}, {x1, x2}, {x3, x2}}.

Then, we may notice that there are at least two irredundant subsets
of τ(M(φ)):

ψ1 = {{x1, x2}, {x1, x3}, {x2, x3}}.
ψ2 = {{x1, x3}, {x1, x2}, {x3, x2}}.

Note thatψ1 is logically equivalent toψ2, and thus both are also
equivalent toτ(M(φ)) itself.

To address the two problems, this paper focuses on the following
CNF formula.

Definition 3 (Bottom formula) Let φ be a tautology-free CNF
formula andTaut(φ) the following set of tautologies:

Taut(φ) = { x ∨ x | φ contains both x and x }.

Then, thebottom formula wrtφ (in short, bottom formula) is de-
fined as the CNF formulaτ(M(φ ∪ Taut(φ))).

3. Properties of bottom formulas

Now, we show two properties of bottom formulas.

Theorem 2 Let φ be a tautology-free CNF formula. Then, the
bottom formula wrtφ is irredundant.

(0, {})

(1, {x1})

(2, {x1, x2})

(1, {x2})

(2, {x1, x3}) (2, {x2, x2}) (2, {x2, x3})
Tautology

(3, {x1, x2}) (3, {x1, x3 ,x2}) (3, {x1, x3 ,x2})
Non-minimal Non-minimal

(3, {x2, x3})

図 3: Enumeration tree forφ2 ∪ Taut(φ2)

Example 5 Recallφ2 = {{x1, x2}, {x2, x3}} in Example 3.
Taut(φ2) is {x2 ∨ x2}. Figure 3 describes the enumeration
tree forφ2 ∪ Taut(φ2). From this tree, the bottom formula is
{{x1, x2}, {x2, x3}}. Indeed, it is irredundant, since it does not
contain the resolvent{x1, x3}.

In terms of the first problem, Theorem 2 shows a remarkable role
of adding tautologies that prohibits any redundant clauses from be-
ing generated in MD computation. Note here that Theorem 2 en-
sures that the bottom formula is irredundant, but it does not ensure
it is prime.

Example 6 Recall the CNF formulaφ in Example 4. Taut(φ)

is {{x1, x1}, {x2, x2}, {x3, x3}}. The bottom formula is as
follows:

{{x1, x2, x3}, {x3, x2, x1}, {x3, x2, x1},
{x2, x3, x1}, {x2, x3, x1}, {x2, x3, x1}}.

We writeC1, C2, . . . , C6 for the above clauses in turn (i.e.,C4 is
{x2, x3, x1}). We then notice that the bottom formula is non-
prime, because it contains a non-prime implicateC1 whose subset
{x1, x2} is an implicate ofφd.

As shown in Example 6, the bottom formula itself is not necessar-
ily an output by NMD. However, every NMD output is logically
connected with this formula.

Theorem 3 Let φ be a tautology-free CNF formula. Then,ψ is
an output by NMD forφ if and only if ψ ⊆ τ(M(φ)) and ψ

minimally subsumes the bottom formula wrtφ.

Example 7 Recall Example 4 and Example 6. Figure 4 describes
the subsumption lattice bounded by two irredundant prime out-
putsψ1 andψ2 and the bottom formula{C1, C2, . . . , C6}. The
solid (resp. dotted) lines show the subsumption relation between
ψ1 (resp. ψ2) and the bottom formula. We then notice that both
outputsψ1 andφ2 minimally subsume the bottom formula.

4. Reducing NMD to MD

Theorem 3 shows that every NMD outputψ can be generated
by selecting a subsetψ of τ(M(φ)) that minimally subsumes the
bottom formula. Now, we show that the task of this selection is
done by MD computation.

Let the bottom formula be{C1, C2, . . . , Cn}. We then de-
note bySi (1 ≤ i ≤ n) the set of clauses inτ(M(φ)) each
of which is a subset ofCi. Fφ denotes the family of those sets
{S1, S2, . . . , Sn}.
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{x1, x2} {x1, x3} {x2, x3} {x1, x3} {x1, x2} {x3, x2}

ψ1 ψ2

C1 C2 C3 C4 C5 C6

Bottom formula

図 4: Subsumption lattice bounded by NMD outputs and the bot-
tom formula

Theorem 4 Let φ be a tautology-free CNF formula.ψ is an out-
put by NMD forφ if and only if ψ is an MHS ofFφ.

Example 8 Recall Example 7. We denote each clause ofψ1 and
ψ2 in Figure 4 byD1, . . . , D6, starting from left to right (i.e.,D4

is {x1, x3}). Then,Fφ is as follows:

Fφ = {{D1, D4}, {D1, D6}, {D2, D6},
{D3, D4}, {D3, D5}, {D2, D5}}.

By MHS computation, we have the five MHSs ofFφ:

{D1, D2, D3}, {D4, D5, D6}, {D1, D2, D4, D5},
{D1, D3, D5, D6}, {D2, D3, D4, D6}.

They contain two MHSs{D1, D2, D3} and{D4, D5, D6} that
correspond to NMD outputsψ1 andψ2, respectively.

Both the bottom theory andτ(M(φ)) are obtained by one MD
computation. Furthermore, Theorem 4 shows that the task of se-
lecting irredundant subsets is also done by another MD compu-
tation. In summary, the NMD problem of a tautology-free CNF
formula φ can be reconstructed into two MD problems: one for
computing the bottom theory wrtφ andτ(Mφ), and the other for
computing an MHS ofFφ.

5. Conclusion and future work

This paper have presented a technique for dualizing non-
monotone Boolean functions by monotone dualization computa-
tion. Previous works revealed that monotone dualization is solv-
able in a quasi-polynomial-total time, and efficient algorithms for
it and its related problems have been proposed. In this context, our
result gives an insight to use those efficient algorithms of mono-
tone dualization for non-monotone cases. The main result is de-
scribed in Theorem 3 that the bottom formula minimally subsumes
every output. Based on this result, we reduce any non-monotone
dualization problem to two monotone dualization problems. We
emphasize that the result enables us to generateeveryoutput that
makes possible to find the most compact solution. Our result also
enables us to investigate the complexity of NMD from the view-
point of MD computation. For instance, the complexity of gener-
ating every NMD output can be described as follows:

(n + k)O(log (n+k)) + (k + m)O(log (k+m)),

wheren, k andm are the sizes of the input formulaφ, the bottom
formula wrt φ and all the NMD outputs. This is simply derived
from the complexity of MD computation [Fredman 96].

A further investigation on previously proposed methods of
NMD is an important future work. Whereas this paper provides
a solution for NMD using MD computation, it is necessary to clar-
ify the significance of our technique with respect to improvement
of previous bounds and applicability to practical problems. Sum-
maries of the state-of-the-art NMD and comparisons with them
will make our contribution clearer.
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