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Abstract 

A linear Markov system can be represented by an 

autoregressive and moving average (ARMA) model in 

discrete time domain. It can be used to identify some 

system model and its associated parameters. Recently, the 

ARMA model has been extended to an ARMA-LiNGAM 

model which is a canonical form to represent the system. It 

is expected to provide more detailed information of the 

model structure and the parameters. In this paper, we 

extend the model to a more generic ARMA-LiNGM 

model and analyze the relationships between the ARMA-

LiNGM model and a CTARMA model which is another 

canonical form of the system model in continuous time 

domain. As the consequence, we provide the relations 

between the coefficients of the two models, which can 

help us to overcome limitations of a classical ARMA 

model on the identification of the model and its parameters. 

1. Introduction 

Most of real world systems are characterized by their 

mathematical models and their parameters which provide 

their useful process information for various engineering 

purposes, but these models and parameter values are 

unknown in many cases. A good example is model 

identification of a nuclear power plant from measurement 

data. Most important process of a nuclear reactor is 

neutron breeding usually represented by a point-

kinematics reactor model [Hetrick 71]: dn(t)dt = p − βl n(t) + � λ�c�(t)� + q,                  (1) 

dc�(t)dt = β�l n(t) − λ�c�(t)      (i = 1 … 6) ,           (2) 

where n(t) and ci(t) are neutron flux and the i-th neutron 

emitter density at time t respectively. ßi and λ�  are 

respectively a delayed-neutron fraction and a decay 

constant of the i-th neutron emitter such that β = ∑ β�� . p, l 

and q are reactivity, neutron generation time and neutron 

source intensity. 

One of the biggest problem of nuclear reactor safety is to 

find up the model and its parameters p/l, β�/l, λ� and q. By 

knowing them, we can more effectively and safely control 

the reactor. But they are not directly obtained because 

these relations among the state variables are intentional. 

Accordingly, we need to indirectly estimate its structure 

and their values by using the directly measurable variables 

such as neutron flux n(t) only.   

In case of a linear Markov system such as Eq.(1) and (2), 

we can apply ARMA modeling which can be used as an 

empirical system model obtained from the observed 

signals [Box 76]. But, the ARMA model has some 

limitations to identify our objective system model and its 

parameters. These limitations are: it does not give us the 

unique representation of the system because it is not 

canonical [Moneta 10], and it misses some instantaneous 

interactions among variables when the available 

granularity of the time discretization in the observation is 

not sufficient to capture the system dynamics. These 

limitations cause the difficulty to identify the model and 

its parameters of the system dynamics correctly.   

Accordingly, we need to provide some extension of the 

ARMA model to include the instantaneous effects among 

variables and to propose its canonical form.  Furthermore, 

if the canonical ARMA model is directly related with the 

differential equation model of the system, we can relate 

the empirical system analysis and the domain knowledge 

based system analysis. This enables the empirical 
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validation of the domain knowledge on the system and the 

complement of the domain knowledge such as physical 

parameter value estimation. The research objective of this 

paper is to propose an appropriate canonical extension of 

the ARMA model named ARMA-LiNGM in discrete time 

domain which directly corresponds to some linear 

differential equation model of the system in continuous 

time domain and to give their quantitative relation. This 

work will provide the basis of the above mentioned unified 

framework of the empirical and deductive analyses.  

2. Research Background 

2-1.  CTARMA model 

Let`s consider a linear Markov system in continuous time 

domain. It can be represented by higher order linear 

differential equations. Their standard formulation is p-th 

ordinary linear differential equations and observation 

equations of the state space model in continuous time 

domain [Stamer 96]: 

dX(t)/dt=AX(t)+BdW(t)/dt  (3), 

Y(t)=C
t
X(t)                       (4) 

where (3) is a Langevin differential equation for X(t) 

which is a vector of derivatives of a state variable vector 

x(t) as 

X(t) = � x(t)…x(���)(t)�, 

where x(�)(t)  is the i-th derivative of x(t). Here, A is a 

matrix having an upper shift block structure except the 

bottom p blocks Sm (m=0,…,p-1) representing system 

dynamics. B is a matrix having all zeros except an identity 

submatrix at its bottom block. C is a matrix having an 

identity submatrix at its top block, observation coefficient 

submatrices Rm (m=1,…,q) from the second to (q+1)-th 

blocks and zeros in the rest.  

This model is easily transformed to the following 

CTARMA model in continuous time domain [Stamer 96]: 

Y(�)(t) = � S"Y(")(t)���
"#$ + W($)(t) + � R"W(")(t)'

"#�   (5) 

If we know a relation between a CTARMA model and an 

ARMA model empirically obtained from observed time 

series of Y(t), we immediately obtain the state space 

model: Eq.(3) and (4) because the coefficient matrices of 

the CTARMA model directly correspond to the matrices 

of the state space model. Thus, CTARMA model provides 

a connection between the empirical ARMA model and the 

dynamics model of a linear Markov system. 

2-2.  ARMA model and ARMA-LiNGAM 

model 

An ARMA model is a representation of a linear Markov 

system approximated in discrete time domain. A 

multivariate ARMA model of order (p,q) is defined by 

[Box 76]: 

Y(t) = � Φ*Y(t − j∆t) + U(t) + � θ*U(t − j∆t)'
*#� ,�

*#�  (6)    
where U(t) is an external noise vector, and Φ*, θ*are AR 

and MA coefficient matrics. This is equivalent to 

P��Y(t) = � P��Φ*PP��Y(t − j∆t) + U∗(t)�
*#�

+ � P��θ*PU∗(t − j∆t),'
*#�            (7) 

where P is a regular matrix and U∗(t) = P��U(t). This 

implies that a given impulse response of the ARMA 

model  Eq.(6): 

Y(t) = � Φ*U(t − j)2
*#$  

is equivalent to  

Y(t) = � Φ*PP��U(t − j) = � Φ*PU∗(t − j)2
*#$

2
*#$  

Thus Y(t) has a same response for different U(t) and U∗(t) under P. It is clear that the representation of the 

ARMA model is not unique, because for any nonsingular 

matrix P we will get equivalent impulse responses.  

That can be solved by using the linear non-Gaussian 
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acyclic model (ARMA-LINGAM), which is a combination 

of autoregressive and structural-equation models: Y(t) =B$Y(t) + ∑ B4Y(t − τ) + W(t)64#� , where the LiNGAM 

part is acyclic (B0 can be represented by a lower triangular 

matrix), and each element of W(t) is a non-Gaussian noise. 

These assumptions of acyclicity and non-Gaussianity 

enables the estimation of the LiNGAM part: B0x(t) of the 

model [Hyvärinen 08]. By this LiNGAM part, ARMA-

LINGAM represents instantaneous influences among 

variables. But it assumes acyclic dependency of the 

instantaneous influences among variables which does not 

generally hold for most physical processes. 

3.  Proposed ARMA-LiNGM model 

A solution to the above limitation is to retract the 

acyclicity assumption. Instead, we assume that the process 

of the objective system follows a linear Markov system 

represented by a linear differential equations in continuous 

time domain, and we propose an extension of an ARMA-

LiNGAM model named “auto-regressive moving average 

and linear non-Gaussian model (ARMA-LiNGM)”. :  
Y(t) = Ψ$Y(t) + � Ψ"Y(t − m∆t) + W(t)�

"#�
+ � Ω"W(t − m∆t) '

"#�            , or 
(I − Ψ$)Y(t) = � Ψ"Y(t − m∆t) + W(t)�

"#�
+ � Ω"W(t − m∆t)'

"#�      (8)                     
Here, Ψ$ is an arbitary matrix, but its diagonals are zero, 

and I − Ψ$ is regular. W(t) is a non-Gaussian noise vector. 

This is the unique difference from Ψ$  of the ARMA-

LiNGAM.  

If we compare this model Eq.(8) with the ARMA model 

Eq.(6), we understand that an ARMA-LINGM is a 

representation of the ARMA model, and their coefficient 

matrices have the following relations [Kawahara 10]: Ψ* = (I − Ψ$)��Φ* 

W(t) = (I − Ψ$)��ε(t)                                    (9) Ω* = (I − Ψ$)θ*(I − Ψ$)�� 

We understand that ARMA-LINGM is canonical under a 

given Ψ$ by comparing Eq.(7) and (8) since the matrix P is 

uniquely specified by P= I − Ψ$.  

4. Relation of CTARMA and ARMA-LiNGM 

Our objective in this paper is to analyze relations of 

coefficient matrices between a CTARMA model and our 

proposed ARMA-LiNGM by assuming that both models 

represent an identical linear Markov system under a 

sampling time discretization. As shown later, the 

consequence of this analysis provides a strong constraint 

to determine Ψ$.  
First, we introduce an approximation of CTARMA model 

for discrete time. This is made through discrete 

approximation of n-th derivative of Y(t) using Euler 

approximation:  

t
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By substituting Eq.(10) into Eq.(5), we obtain the next 

form: 

 E� R6
'

6#$ ∆t��6F�� EI − � ∆t��"S"
���
"#$ F Y(t)W(t − m∆t), 

= E� R6
'

6#$ ∆t��6F�� � (−1)" � k!(k − m)! m! S6∆t��6Y(t�
6#"

�
"#�− m∆t) + W(t) + 

+ E� R6
'

6#$ ∆t��6F�� � (−1)" � k!(k − m)! m! R6
'

6#"
'

"#� ∆t��6 

  where S� = −I, R$ = I∆t��.                        (11) 

By comparing Eq.(8) and Eq.(11), we obtain the following 

Lemma. 

Lemma 1 Coefficient matrices of an ARMA-LiNGM in 

Eq.(8) is represented by coefficient matrices of a 



The 25th Annual Conference of the Japanese Society for Artificial Intelligence, 2011 

- 4 - 

CTARMA model in Eq.(5) as follows. 

Ψ$ = I − E� R6
'

6#$ ∆t��6F�� EI − � ∆t��"S"
���
"#$ F, 

Ψ" = (−1)" E� R6
'

6#$ ∆t��6F�� � k!(k − m)! m! S6∆t��6�
6#"  

Ω" = (−1)" K� R6
'

6#$ ∆t��6L�� � k!(k − m)! m! R6
'

6#" ∆t��6 

where m ≥ 1, S� = −I, R$ = I∆t��. 

When a CTARMA model is given, then we uniquely 

obtain an ARMA-LiNGM by this Lemma. 

In reverse, we can get the coefficient matrices of a 

CTARMA model: Rm and Sm by an ARMA-LiNGM 

derived from a given time series data of Y(t). It is done by 

solving the last two equations in Lemma 1. Considering  R$ = I∆t�� and S� = −I, we can solve the formulae with 

Rk and Sk by an inductive derivation and obtain the next 

Lemma. 

Lemma 2 Coefficient matrices of a CTARMA model in 

Eq.(5) is represented by coefficient matrices of an ARMA-

LiNGM in Eq.(8)  as follows. R"
= (−1)"∆t"�� EI
− �(−1)N � k!(k − s)! s!Ω6

'
6#N

'
N#� L�� � k!(k − m)! m!Ω6

'
6#"  

, where 1 ≤ m ≤ q    SP
= ∆tP��(−1)P QEI
− �(−1)N � k!(k − s)! s!Ω6

'
6#N

'
N#� L��  � k!(k − n)! n!Ψ6

���
6#P

+ (−1)��� p!(p − n)! n! IF   
 , where 1 ≤ n ≤ p − 1 

 Conclusion 

We showed that there is a non-linear relation between the 

coefficients of the two models, CTARMA and ARMA-

LINGM, upon a discrete time approximation of CTARMA. 

Accordingly, we can estimate a structure and parameters  

of a linear differential equations representing an objective 

system from an ARMA-LINGM model obtained from a 

given time series Y(t).  
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