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Neural basis of Hick’s law:
Cortical-circuit model accounting for decision timing of multi-alternative decision
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1. Introduction

Psychological timing of decision between multiple alternatives
is known to follow Hick’s law. This empirical law tells that the
response time (the amount of time taken for choosing one
alternative) is a log-linear function of the number of alternatives
[1]. While Hick’s law is widely used as a design principle in
human-computer interaction literature, surprisingly little is
established on its neural basis.

Several authors have proposed mathematical models to
examine internal mechanisms underlying Hick’s law [2, 3].
However, these models are built on highly abstract schemes with
ad hoc assumptions, and their relevance to real brain processes is
unclear.

Biophysically realistic cortical-circuit models have also been
proposed [4, 5] to specifically account for electrophysiological
and behavioural findings of the recent experiment study using
two- and four-choice direction discrimination task [6].
Nevertheless, whether these models can reproduce Hick’s law is
unaddressed.

The purpose of the present study is to propose the first
cortical-circuit model that reproduces Hick’s law. We also
examine statistical properties of response time of multi-
alternative decision on the basis of this model.

2. Methods

2.1 Hick’s law

Hick’s law states that the mean of response time of multi-
alternative decision increases log-linearly with the number of
alternatives. Here, “mean” refers to the average over multiple
trials. Mathematical expression of Hick’s law is given by

u=>blog,(P+1), @)
where 4, b and P are the mean response time, a suitable
constant and the number of alternatives, respectively.
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2.2 Model architecture

We consider multiple populations of excitatory neurons, with
each population exclusively corresponding to one of multiple
alternatives. Each population consists of M subpopulations of
N excitatory neurons. These N neurons are located nearby each
other in the cortex and are recurrently connected with strong
excitatory synapses. Subpopulations in each population, which
are not necessarily nearby located, interact with each other via
horizontal, weaker excitatory connections.

For each subpopulation we consider inhibitory neurons
associated with this subpopulation. These inhibitory neurons
specifically project to excitatory neurons in the associated
subpopulation that in return project to these inhibitory neurons.
Thus these inhibitory neurons give feedback inhibition to the
associated subpopulation. We refer to this inhibition as ‘local
inhibition’. In the real brain, this type of inhibition is mediated
by dendrite-targeting, calbindin-containing interneurons [7].

We further consider a pool of inhibitory neurons of another
type. All the excitatory neurons in the model project to these
inhibitory neurons that in return nonspecifically project to all the
excitatory neurons. These inhibitory neurons generate mutual
inhibition between populations, which will be referred to as
‘global inhibition’. This type of inhibition is mediated in the real
brain by perisoma-targeting, parvalbumin-containing
interneurons (basket cells) [7]. We further assume that each
neuron is subject to background noise.

2.3 Neuronal dynamics

We refer to the n -th excitatory neuron belonging to the m -th
subpopulation in the p -th population as ‘neuron (n, m, p) ’. Let
S(p,m,n) be a binary variable describing the state of
neuron (n, m, p) : If this neuron is active, S(n,m, p)=1;ifitis
inactive, S(n,m,p)=0 . Local and global inhibitions are
modelled by linear feedback formulae (see the third and fourth
terns in the right-hand side of Eq. (2)).

The state transition of excitatory neurons is defined by the
following asynchronous stochastic dynamic.
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(i) Select one excitatory neuron (say, neuron (n, m, p) )
randomly from the pool of all the excitatory neurons.
(i) Calculate the input to the selected neuron,

1(n.m.p)=(G./(N -1))(X,S(n".m.p)=5(n.m.p))
A/ (DN, S )T Smr))
~(G/N)(X, S(nm.p))
—(G,/NM)(zn,vm,p,S(n‘, m',p')).

Here, G, is the strength of recurrent connection between
excitatory neurons in each subpopulation; G, is the strength of

horizontal excitatory connection between subpopulations in each
population; G, and G, represent the strengths of local and
global inhibitions, respectively.

(iii)) Update S (n, m, p) by the following probabilistic rule:

1 with probability p= 1/(1 + eiﬂl("’m'p))

S(n, m,p) = 3)

0 with probabikity I-p
(iv) Repeat (i)-(iii).

2.4 Parameter values

Parameter values used in the present study are listed as follows:
N=5M=100,G, =2.0;G, =2.0;G, =2.0; G, =1.75; f =45

3. Results

Simulation analysis of the model revealed a characteristic time
course of neuronal activation (Fig. 1). At first the activity of one

population, which is defined by z" S (n, m, p), is gradually

ramped up, while those of the other populations gradually
decrease. Then at a certain time the former sharply increases to
the maximum, while the latter ones fall to the minimum.

We regard the alternative corresponding to the maximally
activated population as the chosen alternative and define the
response time (RT) by the timing of the onset of this maximal
activation. The simulated RT varies from trial to trial (data not
shown); this is attributed to the probabilistic nature of the model.
Hence we calculated the mean of simulated RT. We found that
the simulated mean RT increases log-linearly with the number of
alternatives (Fig. 2), thus following Hick’s law.

In practical psychological experiment, subject’s decision
timing also varies from trial to trial. However, statistical
properties of RT for multi-alternative decision are not yet fully
established so far. To get insight into them, we examined the
coefficient of variation (CV) of simulated RT (i.e. the ratio of the
standard deviation to the mean) as a function of the number of
alternatives. We found that CV of simulated RT is constant with
the number of alternatives (Fig. 3).

4. Discussion

Hick’s law is a hallmark of multi-alternative decision making.
Nevertheless, neural basis of Hick’s law is little established up to
now. Here we have proposed a cortical-circuit model that
reproduces Hick’s law.

The model also gives testable prediction to psychophysical
experiment: The coefficient of variation of the response time of
multi-alternative decision is kept constant with the number of

alternatives. Interestingly, preliminary data from a recent
psychophysical experiment is consistent with this prediction (see
Fig. 6 of [8]).
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Figure 1: Time course of population activity for four (/eff) and
eight (right) alternatives
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Figure 2: The simulated mean RT (500 trial average) increases
log-linearly with the number of alternatives.
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Figure 3: The CV of RT is constant with the number of
alternatives.

Acknowledgement
This study was partly supported by JSPS, KAKENHI (23500379).

References

1. Hick, W. E. J. Exp. Psychol. 4, 11-26 (1952).

2. Usher, M., Olami, Z. & McClelland, J. L. J. Math. Psychol. 46,
704-715 (2002).

3. McMillen, T. & Holmes, P. J. Math. Psychol. 50, 30-57
(20006).

4. Furman, M. & Wang, X.-J. Neuron 60, 1153-1168 (2008).

5. Albantakis, L. & Deco, G. Proc. Natl. Acad. Sci. USA 106,
10308-10313 (2009).

6. Churchland, A., Kinai, R. & Shadlen, M. N. Nature Neurosci.
11, 693-702 (2008).

7. Fino, E. & Yuste, R. Neuron 69, 1188-1203 (2011) and
references therein.

8. Brown, S., Steyvers, M. & Wagenmakers, E.-J. J. Math.
Psychol. 53, 453-462 (2009).



