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多者択一過程における決定タイミングを説明する皮質回路モデル 
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Cortical-circuit model accounting for decision timing of multi-alternative decision 
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ヒックの法則は，複数のメニューから一つを選択するのに要する時間（反応時間）が選択肢数の対数に比例すると主張す

る．UI 設計・ユーザビリティ評価においてヒックの法則の実用的価値が広く認められているのとは対照的に，この心理物理

経験則の神経基盤はほとんどわかっていない．我々はヒックの法則を再現する皮質回路モデルを構築した．このモデルは

さらに，反応時間の変動係数（標準偏差/平均）が選択肢数によらず一定になることを予言する． 

 

1. Introduction 

Psychological timing of decision between multiple alternatives 

is known to follow Hick’s law. This empirical law tells that the 

response time (the amount of time taken for choosing one 

alternative) is a log-linear function of the number of alternatives 

[1]. While Hick’s law is widely used as a design principle in 

human-computer interaction literature, surprisingly little is 

established on its neural basis.  

Several authors have proposed mathematical models to 

examine internal mechanisms underlying Hick’s law [2, 3]. 

However, these models are built on highly abstract schemes with 

ad hoc assumptions, and their relevance to real brain processes is 

unclear.   

Biophysically realistic cortical-circuit models have also been 

proposed [4, 5] to specifically account for electrophysiological 

and behavioural findings of the recent experiment study using 

two- and four-choice direction discrimination task [6]. 

Nevertheless, whether these models can reproduce Hick’s law is 

unaddressed.  

The purpose of the present study is to propose the first 

cortical-circuit model that reproduces Hick’s law. We also 

examine statistical properties of response time of multi-

alternative decision on the basis of this model. 

2. Methods 

2.1 Hick’s law 

Hick’s law states that the mean of response time of multi-

alternative decision increases log-linearly with the number of 

alternatives. Here, “mean” refers to the average over multiple 

trials. Mathematical expression of Hick’s law is given by 

 ( )2log 1b Pµ = + , (1) 

where µ , b  and P  are the mean response time, a suitable 

constant and the number of alternatives, respectively.  

2.2 Model architecture 

We consider multiple populations of excitatory neurons, with 

each population exclusively corresponding to one of multiple 

alternatives. Each population consists of M  subpopulations of 

N  excitatory neurons. These N  neurons are located nearby each 

other in the cortex and are recurrently connected with strong 

excitatory synapses. Subpopulations in each population, which 

are not necessarily nearby located, interact with each other via 

horizontal, weaker excitatory connections. 

For each subpopulation we consider inhibitory neurons 

associated with this subpopulation. These inhibitory neurons 

specifically project to excitatory neurons in the associated 

subpopulation that in return project to these inhibitory neurons. 

Thus these inhibitory neurons give feedback inhibition to the 

associated subpopulation. We refer to this inhibition as ‘local 

inhibition’. In the real brain, this type of inhibition is mediated 

by dendrite-targeting, calbindin-containing interneurons [7]. 

We further consider a pool of inhibitory neurons of another 

type. All the excitatory neurons in the model project to these 

inhibitory neurons that in return nonspecifically project to all the 

excitatory neurons. These inhibitory neurons generate mutual 

inhibition between populations, which will be referred to as 

‘global inhibition’. This type of inhibition is mediated in the real 

brain by perisoma-targeting, parvalbumin-containing 

interneurons (basket cells) [7]. We further assume that each 

neuron is subject to background noise.  

2.3 Neuronal dynamics 

We refer to the n -th excitatory neuron belonging to the m -th 

subpopulation in the p -th population as ‘neuron ( ),,n m p ’. Let 

( ), ,S p m n  be a binary variable describing the state of 

neuron ( ),,n m p : If this neuron is active, ( ), 1,S n m p = ; if it is 

inactive, ( ), 0,S n m p = . Local and global inhibitions are 

modelled by linear feedback formulae (see the third and fourth 

terns in the right-hand side of Eq. (2)).  

The state transition of excitatory neurons is defined by the 
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(i) Select one excitatory neuron (say, neuron ( ),,n m p ) 

randomly from the pool of all the excitatory neurons. 

(ii) Calculate the input to the selected neuron,  
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Here, eG  is the strength of recurrent connection between 

excitatory neurons in each subpopulation; EG  is the strength of 

horizontal excitatory connection between subpopulations in each 

population; iG  and IG  represent the strengths of local and 

global inhibitions, respectively.  

(iii) Update ( ), ,S n m p  by the following probabilistic rule:  

( )
( )( ), ,
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,

0 with probabikity 1
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 (3) 

(iv) Repeat (i)-(iii).  

2.4 Parameter values 

Parameter values used in the present study are listed as follows:  

5; 2.0; 2.0; 2.0; 1.75;100; 45e I iEM G G G GN β== = = == = . 

3. Results 

Simulation analysis of the model revealed a characteristic time 

course of neuronal activation (Fig. 1). At first the activity of one 

population, which is defined by ( )
,

,,
n m

m pS n∑ , is gradually 

ramped up, while those of the other populations gradually 

decrease. Then at a certain time the former sharply increases to 

the maximum, while the latter ones fall to the minimum.  

We regard the alternative corresponding to the maximally 

activated population as the chosen alternative and define the 

response time (RT) by the timing of the onset of this maximal 

activation. The simulated RT varies from trial to trial (data not 

shown); this is attributed to the probabilistic nature of the model. 

Hence we calculated the mean of simulated RT. We found that 

the simulated mean RT increases log-linearly with the number of 

alternatives (Fig. 2), thus following Hick’s law.  

 In practical psychological experiment, subject’s decision 

timing also varies from trial to trial. However, statistical 

properties of RT for multi-alternative decision are not yet fully 

established so far. To get insight into them, we examined the 

coefficient of variation (CV) of simulated RT (i.e. the ratio of the 

standard deviation to the mean) as a function of the number of 

alternatives. We found that CV of simulated RT is constant with 

the number of alternatives (Fig. 3). 

4. Discussion 

Hick’s law is a hallmark of multi-alternative decision making. 

Nevertheless, neural basis of Hick’s law is little established up to 

now. Here we have proposed a cortical-circuit model that 

reproduces Hick’s law.  

The model also gives testable prediction to psychophysical 

experiment: The coefficient of variation of the response time of 

multi-alternative decision is kept constant with the number of 

alternatives. Interestingly, preliminary data from a recent 

psychophysical experiment is consistent with this prediction (see 

Fig. 6 of [8]).   
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Figure 1Figure 1Figure 1Figure 1: : : : Time course of population activity for four (left) and 

eight (right) alternatives 
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Figure 2: Figure 2: Figure 2: Figure 2: The simulated mean RT (500 trial average) increases 

log-linearly with the number of alternatives. 
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Figure 3Figure 3Figure 3Figure 3: : : : The CV of RT is constant with the number of 

alternatives. 
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