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Analyzing Optimal Marketing Strategies Over Customers’ Networks
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In a costumers’ network obtained, for example, from social networks, modeling influences among buyers is useful
to estimate a buyer’s decision to buy an item. This kind of influences is sometimes modeled with submodular
functions and the problem of finding the marketing strategies to offer items to buyers that maximize the revenues
of other buyers can be formulated as submodular maximization. In this paper, we address the problem of analyzing
optimal and near-optimal solutions (strategies) to this problem and investigate numerically with real social network
data.

1. Introduction

Social networking has been the most significant business

development since recent years. Social networks, like Face-

book, have allowed companies to collect information about

the users and their relationships. Commonly, companies

can make their marketing strategies over the social networks

by means of advertising. However, research shows that the

advertising-based business model has had only limited suc-

cess on social networking sites. While a new business model

other than the advertising-based business model which is

known as viral marketing [Shapiro & Varian 99] is believed

to have more effect and now is being studied by many re-

searchers.

Imagine that Sony wants to promote its new digital cam-

era. Sony can either advertise on Facebook and accept a

very low click-through rate, or give away free cameras to

several Facebook members (potentially at a lower cost than

advertising) and generate a viral campaign. Research shows

that this viral campaign is possible [Iyengar et al. 09]. The

point is to find out the group of users who are more likely

to be influenced by such a campaign and as well influence

other friends to become buyers.

The fact that people are influenced by their friends is not

new. We all know it at some level or the other. However, by

understanding the social network of users, companies can

better understand and influence consumers’ behavior.

In order to monetize the marketing strategies, we have

to consider the following two aspects: First, at what price

should the products be given to users? There is a trade-

off when offering products for free or giving discounts to

a group of initial users. It decreases the revenue earned

from the transaction while increasing the likelihood of a

sale and the influence on future buyers. Second, in what

sequence should the selling happen? Influence is usually

not symmetric. We would like to find out the group of users

to give free products to and the sequence to offer discounts

which can cause further sales to occur earlier. Our goal is to

investigate the marketing strategies that optimize a seller’s

revenue.

Such problems can be modeled as combinatorial prob-

lems but is very hard to find out the optimal solution. We

Contact: Qixin Liu, cherry@ar.sanken.osaka-u.ac.jp

notice that the influences is sometimes modeled with sub-

modular functions and the problem of finding the marketing

strategies to offer items to buyers that maximize the rev-

enues of other buyers can also be formulated as submodular

maximization problems [Hartline et al. 08]. To take advan-

tage of such submodularity features, and by applying our

cutting plane method [Kawahara et al. 09], we expect to

gain the optimal and near-optimal solutions to the problem

more efficiently and accurately. In this paper, we explore

the optimal marketing strategies by means of submodular

maximization and put forward some efficient algorithm to

this problem.

We will give a detailed explanation of marketing strate-

gies over social networks and show its hardness in Section 2..

Then we will show how to find the optimal marketing strat-

egy by maximizing the expected revenue in the form of

submodular function maximization. In Section 3., we will

introduce our algorithm which is known as cutting plane

method. In Section 4., the result of experiments with real

social network data will be included. Finally we can reach a

conclusion which shows our optimal and near-optimal solu-

tions to this problem. And there are subjects left for further

researches.

2. Marketing strategies and Submodu-
lar Maximization

As discussed in the introduction, a marketing strategy

has the seller visiting buyers in a certain sequence and of-

fering each buyer a price. We assume that the decision of a

buyer whether to accept or reject an item is dependent on

other buyers’ behaviors (whether buy the items or not and

at what price they buy the items).

Now we describe a general setting of the model. We as-

sume that there is a set V of potential buyers. A buyer’s

decision to buy an item is dependent on other buyers who

already own the item. For buyer i ∈ V , the value of the

buyer for the good is defined by a set function vi : 2
V → R+.

The function models the influence that buyers have on fu-

ture buyers. If a set S ⊆ V \{i} of buyers already owns the

item, the value of buyer i, or the maximum willingness to

pay of buyer i is a non-negative number vi(S). We assume

that the seller doesn’t know about the value functions but

instead has distributional information F about them. F (p)
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is the cumulative distribution that the buyer’s value is less

than p. If we can find the optimal price p∗ which can maxi-

mize the expected revenue p·(1−F (p)) extracted from buyer

i, then the optimal revenue will become p∗ · (1− F (p∗)).

Here are some instantiations of the influence model that

we use in the paper [Hartline et al. 08].

Uniform Additive Model

There weights wij for all i, j ∈ V . The value vi(S), for

all i ∈ V and S ⊆ V \{i}, is drawn from the uniform distri-

bution [0,
∑

j∈S∪{i} wij ].

Symmetric Model

The valuation vi(S) is distributed according to a distri-

bution Fk, where k = |S|.

Concave Graph Model

Each buyer i ∈ V is associated with a non-negative,

monotone, concave function fi : R
+ → R+. The value vi(S)

for all i ∈ V , S ⊆ V \{i}, is equal to fi(
∑

j∈S∪{i} wij). Each

weight wij is drawn independently from a distribution Fij .

The distributions Fi,S can be derived from the distributions

Fij for all j ∈ S.

2.1 Optimal Price over Symmetric Settings
We now consider the optimal marketing strategy over

symmetric settings and show the optimal price gained by a

simple dynamic programming approach.

In the symmetric settings, we assume that the buyer val-

ues are drawn from one of |V | distributions Fk. The offered

price is only related with the number of buyers that have

owned the item and the number of buyers who have not.

Given that k people have accepted the item and t buyers

remained under consideration, p(k, t) is the offer price to

the buyer under consideration, R(k, t) is the maximum ex-

pected revenue that can be collected from the remaining

buyers. The cumulative distribution Fk(p) of the buyer’s

willingness to buy at a price less than p and its density

function fk(S) also exist.

For a price p, if the buyer accepts, we can get the revenue

of p+R(k+1, t−1), and if he rejects, we can get the revenue

of R(k, t− 1). The expected remaining revenue is

Fk(p) ·R(k, t− 1) + (1− Fk(p)) · (R(k + 1, t− 1) + p)

By differentiating the expression with respect to p, we

can get the optimal price.

fk(p)(R(k, t− 1)−R(k + 1, t− 1)− p) + 1− Fk(p) = 0

By means of dynamic program we can get the optimal

price over symmetric settings in polynomial time and thus

get access to compute the expected revenue R(k, t).

2.2 Hardness of Optimal Marketing Strategies
We now have got the optimal price over symmetric set-

tings. We assume that the seller knows such buyers’ values

exactly. The only problem is to find the right sequence to

offer item to buyers. If a set of buyers S have bought the

item, the price to offer to the next buyer i is vi(S), which

is known to the seller. Even so, the problem of finding the

right sequence is NP-Hard. Here we consider the additive

model where, vi(S) =
∑

j∈S∪{i} wij .

For the NP-Hard maximum feedback arc set problem

[Berger & Shor 90], given an edge-weighted directed graph,

we have to order the nodes of the graph to maximize the

total weight of edges going in the backward direction in the

ordering. Our optimal marketing strategies face the same

NP-Hard problem. Let the nodes of the graph be the set

of buyers, the edge weights be wij , the ordering to offer

buyers be σ, and we offer the prices the same as the buy-

ers’ values. Then the revenue from such pricing is equal

to the weight of the feedback arc set when the nodes in

the graph are ordered in the reverse of σ. Thus finding

the optimal marketing strategy is equivalent to computing

the maximum feedback arc set problem and is NP-Hard

[Hartline et al. 08].

2.3 Viral Campaign Marketing
Noticing the hardness problem in last section, we now try

to simplify the model. As we have discussed in introduction,

the viral campaign is considered as an effective marketing

strategy. For viral campaign, the seller firstly gives away

items for free to a selected group of buyers, then offers them

the optimal price by a random sequence. The simplified

model is relatively simple with only two extreme prices and

random orderings.

We want to find a set A that maximizes the revenue g(A)

where g(A) is the expected revenue when we give the item

for free to the set A of buyers. We assume all the rev-

enue functions Ri for i ∈ V be non-negative, monotone and

submodular, then the expected revenue function g(A) =∑
i∈V \A Ri(A).Ri(A) is a non-negative submodular set

function where revenue function Ri(A) = p·(1−F (p)). Con-

sider the aggressive strategy, we use optimal pricing for the

revenue function and Ri(A) = vi(S)(1 − F (vi(S))). Thus

g(A) =
∑

i∈V \A Ri(A) =
∑

i∈V \A vi(S)(1−F (vi(S))). The

proof of the non-negative submodularity of g(A) is as fol-

lows:

It is obvious that g(A) is non-negative and all we need to

prove is that for any set A ⊆ V and C ⊆ V , there exists

g(A) + g(C) ≥ g(A ∩ C) + g(A ∪ C)

First, notice that throughout this paper we assume that

Ri is monotone which means buyers only exert positive in-

fluence on each other, i.e. for all i and A ⊆ B ⊆ V \{i},
Ri(A) ≤ Ri(B). Meanwhile Ri is submodular, i.e. for

all i and A ⊆ V,B ⊆ V \A, Ri(A ∩ B) + Ri(A ∪ B) ≤
Ri(A) + Ri(B), which implies that the marginal influence

of one buyer on another decreases as the set of buyers who

own the good increases. Noticing the monotonicity of Ri,

for each i ∈ (A\C) ∪ (C\A):∑
i∈A\C

Ri(C)+
∑

i∈C\A

Ri(A) ≥
∑

i∈A\C

Ri(A∩C)+
∑

i∈C\A

Ri(A∩C)

(1)

Noticing the submodularity of Ri, for each i ∈ V \(A∪C),

Ri(A) +Ri(C) ≥ Ri(A ∪ C) +Ri(A ∩ C)
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By summing the above two expression we have,∑
i∈V \(A∪C)

Ri(A) +
∑

i∈V \(A∪C)

Ri(C) ≥

∑
i∈V \(A∪C)

Ri(A ∪ C) +
∑

i∈V \(A∪C)

Ri(A ∩ C)

(2)

By summing (1) and (2) we have∑
i∈V \A

Ri(A) +
∑

i∈V \C

Ri(C) ≥

∑
i∈V \(A∪C)

Ri(A ∪ C) +
∑

i∈V \(A∩C)

Ri(A ∩ C)

In this paper, we address submodular function maximiza-

tion under a cardinality constraint:

max
S⊆V

f(S) s.t. |S| ≤ k,

where V = {1, ..., n} and k is a positive integer with k ≤
n. Notice that the function g(A) is not monotone and we

cannot use the simple greedy algorithm.

3. Algorithm

As stated above, designing optimal marketing strate-

gies can be formulated as the problem of maximizing non-

monotone submodular functions. For monotone submodu-

lar functions, it is known that the greedy method perform

well [Nemhauser et al. 78]. However, since the revenue is

non-monotone, the performance of the greedy method can

be no longer assured. For this reason, here we apply a mod-

ified branch-and-bound method to this problem.

The branch-and-bound method is the today’s state-of-the

art method to solve a broad range of mathematical prob-

lems [Ibaraki 87]. In this method, we recursively generate

sub-problems by fixing a part of variables in the parent

problem (branching) and judging whether an optimal solu-

tion is included in the sub-problem and its further branched

problems (bounding). For such judgement, we evaluate an

upper bound of the subproblem ubs and compare it with a

lower bound of the original problem lb. That is, when ubs

is less than lb, it is assured that an optimal solution is not

included in the subproblem and its further branched prob-

lems. Since submodular maximization can be formulated

as a binary-integer linear program, i.e., an optimal solution

of submodular function is equivalent to the following:

max η

s.t. η ≤ g(S) +
∑

j∈V \Sρj(S)yj

−
∑

j∈Sρj(V \ j)(1− yj)(
∀S ⊆ V ),

AT
i y ≤ bi(i = 1, . . . ,m), yj ∈ {0, 1}(j ∈ V ),

where ρj(S) := g(S ∪ j) − g(S) (S ⊂ V , j ∈ V \ S), we

can design the way of calculating an upper bound for the

bounding operation [Nemhauser & Wolsey 81].

Construct a BDD representing the size constraint.1

Set L ← (∅, V ) and lb← fg , where fg is the function2

value by the greedy algorithm.
while L ̸= ∅ do3

Select a subproblem (A, V s) from the top of the list L4

and remove it from L (let τ = |A|).
Compute a greedy solution consisting of S plus5

additional elements from V s. Let denote by lbs its

value and suppose the greedy algorithm generates the
set (S = Sτ , . . . , Sk).
Solve the linear programming:6

max η

s.t. η ≤ f(St) +
∑

j∈V \S
ρj(S)yj

−
∑
j∈St

ρj(V \ j)(1− yj)(t = τ, . . . , k),

AT
i ≤ bi(i = 1, . . . ,m), yj ∈ [0, 1](j ∈ V s),

and set ubs = max η. If lbs > lb, lb← lbs, S̄ ← S.
if lb− ϵ ≥ ubs then7

Construct an exclusive cut for (A, V s) and goto8

Step 4.

Construct the submodularity cut with respect to Sk9

and lb− ϵ and apply the conjunction operation
between its BDD to the current BDD.
Append two sub-problems that correspond to the two10

edges from the current node in the BDD to L.

Algorithm 1: The branch-and-bound algorithm with

submodularity-cut applied for non-monotone submod-

ular maximization.

Also, to accelerate the branch-and-bound method for our

problem, we generate, at each iteration, a linear constraint

aTx ≤ b such that

g(S′) ≤ γ−ϵ for all S′ s.t. xS′
∈ {x ∈ Bn|aTx ≤ b,x ∈ P},

where γ (=lb) is the current best solution value, P is the

current feasible region and xS′
is the characteristic vector of

subset S′.∗1 Such constraint can be constructed using sub-

modularity (submodularity-cut) (See [Kawahara et al. 09]

for the detail). This could remove many feasible solutions

in each branch-and-bound iteration.

In addition, in order to efficiently maintain and access

solutions during the calculation, we implement the above

framework with binary decision diagrams (BDDs). A BDD

is a compact expression of a boolean function and enables

us to calculate many algebraic operations on boolean func-

tions efficiently in the space of BDDs [Akers 78, Knuth 09].

A feasible region or a linear constraint for set-function op-

timization can be represented using a BDD because both

can regarded as a boolean function (ex. feasible→0 or in-

feasible→1). Thus, once both are represented using BDDs,

we can conduct operations required in the branch-and-

bound method in an efficient manner.

Based on the above, the pseudo-code of the algorithm we

apply is described in Algorithm 1, where set (A, V s) in list

L represents the subproblem with ground set V s and set

∗1 The characteristic vector of S(⊆ V ) is defined as xS :=∑
i∈S ei(∈ Bn), where ei is the i-th unit vector [Murota 03].
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Figure 1: Revenus by Algorithm 1 and greedy method ver-

sus |S| for a randomly generated subgraph with |N | = 119.

Figure 2: Revenus by Algorithm 1 and greedy method ver-

sus the sizes of randomly generated subgraphs for fixed k

(3:left and 5:right).

A whose elements are assigned to 1. In each branch-and-

bound loop, we solve the linear programming to evaluate

an upper bound of a subproblem. In addition to an exact

solution for non-monotone submodular maximization, Al-

gorithm 1 can calculate an ϵ-optimal solution too (For an

exact solution, ϵ can be set as 0).

4. Experiment and Evaluation

We applied Algorithm 1 to social network data and inves-

tigated empirically the discussed marketing strategies. To

this end, we randomly generated moderate-size connected

subgraphs using data from real social networks.∗2

First, the graph in Figure 1 shows that the expected rev-

enue grows with |S|, the number of users to offer free items

to, and reaches the peak where the revenue is maximized,

then goes down again with the growing size of |S|. More-

over, since the revenue function is not monotone, the greedy

algorithm doesn’t work well when selecting small |S|. But

our algorithm gives better result in such cases.

Second, we fix the size of |S| to 3 or 5 and compare these

two algorithms with different sizes of nodes. The graphs in

Figure 2 show that, for |S| = 3 or |S| = 5, our algorithm is

better in getting exact values of the expected revenue than

or equal to greedy algorithm.

5. Conclusion

In this paper, we worked on marketing strategies that op-

timize a seller’s revenue considering the influence of social

∗2 We used the social network datasets available at
http://law.dsi.unimi.it/datasets.php .

networks. We noticed that when the seller gives away items

for free to a selected group of buyers, their friends are likely

to be influenced by their purchasing behavior. And we for-

mulated the optimal revenue the seller can get by choosing

a group of users for such viral campaign as submodular

maximization problem. Since the revenue function is not

monotone, the greedy algorithm is no longer guaranteed to

give the optimal solution. Thus we applied cutting plane

method to this problem.

We conducted the experiment with data sets extracted

from real social network data and make comparison be-

tween the performance of greedy algorithms and our algo-

rithm. For selecting small size of nodes(3 or 5 nodes), our

algorithm gives exactly the best answer while greedy algo-

rithm cannot. When it comes to larger node size, these two

algorithms generate almost the same result.

The problem is that it takes time to run the algorithm we

proposed in this paper although it gives the exact answer.

And for enumerating optimal marketing strategies, we still

have to do experiments over larger data sets. Moreover, we

will take into consideration the order and the optimal price

to offer the items as well in our future work.
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