
The 24th Annual Conference of the Japanese Society for Artificial Intelligence, 2010

1A2-3

Extracting Approximate Biclusters/Patterns from

Time Series Medical Data Using Suffix Trees

Simona Muwazi Makoto Haraguchi

Garduate School of Information Science and Technology, Hokkaido University

Time series medical data contains many null values and is collected over a long period of time. The focus
is on extracting longer decreasing/increasing patterns/biclusters that may be of interest to medical experts in
analysing drug responses and therapies, as well as predicting certain disease occurences. We apply the technique
of biclustering to extract new interesting patterns from this data. Given the data for each patient, we discretize it
to obtain a symbolic representation using statistical methods. We then proceed to efficiently construct a compact
generalized suffix tree over the entire dataset. The algorithm presented in this work extends the problem of common
motif searching as applied in microarray experiments to extract approximate biclusters from within the suffix tree
utilizing a form of string edit distance restricted to substitution and deletion, and the concept of valid models.

1. Introduction

Recently, mining time series data in many different fields

of research, such as genetic microarray experiment analy-

sis and speech processing, has received a lot of focus. In

this work, we develop and present an algorithm directed at

processing medical time series data.

Several approaches for dealing with this kind of data have

been proposed, biclustering being one of the more recent.

It is also known as co-clustering; i.e. the simultaneous clus-

tering of rows and columns in a data matrix. The precise

definition of a bicluster depends on the end result desired

by the application, although they generally fall into broad

categories; constant value biclusters, and coherent value bi-

clusters.

In this paper, we develop and present an algorithm to ex-

tract approximate biclusters from time series medical data

using suffix trees. By analyzing medical data, we may be

able to discover previously unknown patterns that predict

certain types or classes of diseases or analyze the efficacy of

various drugs and therapies when applied to patients.

The next sections describe the data set and explain the

motivation to use biclustering using suffix trees, together

with the key points of the algorithm. We conclude by pre-

senting a brief summary of experimental results.

2. The Data Set: Characteristics

The data set we use was provided by Chiba University

Hospital, and consists of a set of records for patients that

attended the hospital over a period of 2-5 years, during

which time they were diagnosed for thrombosis and the re-

lated collagen diseases. Table 1 lists basic information on

Contact: Makoto HARAGUCHI

Graduate School of Information Science and Technol-

ogy, Hokkaido University

Address: N-14 W-9, Sapporo 060-0814, JAPAN

Phone : +81-11-706-7106

E-mail : mh@ist.hokudai.ac.jp

Table 1: Basic information recorded for each patient at the

hospital, regardless of eventual diagnosis.

Item Meaning

ID Identification of the patient
Sex –
Birthday –
Description Date The first date when a patient data was recorded
First Date The date when a patient came to the hospital
Admission Patient was admitted to the hospital (+) or · · ·
Diagnosis Disease names

Table 2: Details the test results for a patient during hospital

visits.

Item Meaning

ID Identification of the patient
Examination Date Date of the test
aCL IgG anti-Cardiolipin antibody (IgG) concentration
aCL IgM anti-Cardiolipin antibody (IgM) concentration
ANA anti-nucleus antibody concentration
ANA Pattern Pattern observed in the sheet of ANA examination
aCL IgA anti-Cardiolipin antibody (IgA) concentration
Diagnosis Disease names

all patients, such as ID number, birth date, and etc. Ta-

ble 2 provides a record of the patien’s visits to the hospital

together with results for any medical tests carried out.

For our purposes, the data can thus be viewed as an R×C

matrix of data for each patient, where R = {T1, . . . , Tn}
represents the test items, and C = {t0, . . . , tn} represents

time instances (see Figure 1).

Patient visits are highly irregular, and not all tests are

carried out at every visit. The data, although time series,

is therefore characterized by several null values and missing

records.

3. Pattern Definition

Before proceeding any further, we explain the kind of

patterns we are interested in searching for.

In this case, data is recorded over prolonged periods of

1

The 24th Annual Conference of the Japanese Society for Artificial Intelligence, 2010

t0 t1 t2 t3 · · ·
T1 245 235 198 209 · · ·
T2 10 9.7 - 11 · · ·
T3 67 58 65 98 · · ·

Figure 1: An R ×C matrix representing the data collected

for one patient.

time (2-5 years), with several null values present. We are

therefore interested in searching for longer patterns that

display an increasing or decreasing trend with respect to

a given test item. We therefore define patterns as n-

combinations of test items that preserve temporal order.

An n = 1 pattern will consist of a single test item such that

testi = vij(j = 1, . . . , m),

e.g. TEST1 = Normal → Increasing.

Further n-combinations of test items may be defined as

need arises. For example, a pairwise pattern with n = 2

may be defined as

testk test` = vkjv`j ,

e.g.

T1

T2

!

=

L

N

!

assuming, L and N represent a given quality, in this case

Low and Normal.

4. Biclustering: Key Definitions

Given the kind of patterns we are interested in searching,

biclustering is a natural choice. A bicluster in our case is

equivalent to a pattern; from here on, we use the two terms

interchangeably.

Definition 1 (Bicluster): A bicluster is a sub-matrix

AIJ defined by I ⊆ R, a subset of rows, and J ⊆ C, a

subset of columns.

A bicluster with only one row or column can be consid-

ered trivial. Because we are dealing with time series data,

preserving time information is of the utmost importance.

For this reason, we define cc, or column-coherent biclus-

ters.

Definition 2 (CC-Bicluster): A column coherent biclus-

ter (cc-bicluster) AIJ is a bicluster such that Aij = A`j for

all raws i, ` ∈ I and columns j ∈ J .

It is to be noted that searching for all biclusters satisfying

this coherence property is generally an NP-hard problem.

However, an important complexity reduction can be

made due to the time constraint; data must observe time

coherence, i.e. have contiguous columns. This leads to an-

other important definition:

Definition 3 (CCC-Bicluster): A contiguous column

coherent bicluster AIJ is a subset of rows I = {i1, . . . , ik}
and a subset of contiguous columns J = {r, r+1, . . . , s−1, s}
such that Aij = A`j, for all rows i, ` ∈ I and columns j ∈ J .

Lastly, we wish to define maximal biclusters. To achieve

longer patterns, we must search for the largest possible bi-

clusters.

Definition 4 (Maximal-CCC-Biclusters): A CCC-

Bicluster AIJ is maximal if no other CCC-Bicluster exists

that properly contains AIJ , that is, if for all other CCC-

Biclusters ALM , I ⊆ L ∧ J ⊆ M ⇒ I = L ∧ J = M .

5. Approximate Biclusters

The definitions above apply to perfect biclusters, in the

sense that no error margin is permitted. However, the med-

ical data set in question contains several null values. This

implies that to identify longer patterns, we must introduce

an error constraint. Before defining approximate biclusters,

we would like to define the notion of an error neighborhood

for a string;

Definition 5 (Error Neighborhood): The Error-

Neighborhood of a string S of length |S|, defined over the

alphabet Σ with |Σ| symbols, N(e, S), is the set of strings

Si, such that: |S| = |Si| and Hamming(S, Si) ≤ e, where

e is an integer such that e ≥ 0.

This means that the Hamming distance between S and

Si is no more than e, that is, we need at most e symbol

substitutions to obtain Si from S.

We can now define an approximate ccc-bicluster as fol-

lows:

Definition 6 (Approximate CCC-Bicluster): A ccc

bicluster with e errors per test item, is a ccc-bicluster AIJ

where all the strings Si that define the expression pattern of

each of the test items in I are in the error neighborhood of

an expression pattern S that defines the approximate-ccc-

Bicluster: Si ∈ N(e, S), ∀i ∈ I.

Lastly, we formally define the notion of maximal approx-

imate biclusters;

Definition 7 (Maximal Approximate CCC-

Biclusters): An approximate-ccc-bicluster AIJ is maximal

if it is raw-maximal, left-maximal and right-maximal.

This now fits our notion of a pattern; we are effectively

searching for the longest possible patterns while allowing

errors in order to cope with the null values in the data. We

can now state the problem:

Problem Statement: Given a discretized expression

matrix A and three integers e ≥ 0, qr ≥ 2 and qc ≥ 1,

where qr is the row constraint (minimum number of

rows in Ik) and qc is the column constraint (minimum

number of columns in Jk), identify and report all max-

imal approximate-ccc-biclusters

2

The 24th Annual Conference of the Japanese Society for Artificial Intelligence, 2010

Bk = AIkJk

such that, Ik and Jk have at least qr raws and qc

columns, respectively.

6. Using Suffix Trees

Suffix trees are a data structure designed to efficiently

process strings. While computationally expensive to con-

struct, several string operations can be performed very ef-

ficiently once the tree is built. Due to Ukkonen’s algo-

rithm [1] in particular, it is possible to construct the suffix

tree in log-linear time.

The motifs searched by SPELLER correspond to words

over an alphabet Σ, which must occur with at most e mis-

matches in 2 ≤ q ≤ N distinct sequences. Since these words

representing the motifs may not be present exactly in the

sequences, a motif is seen as an ”external” object and is

termed a model.

SPELLER builds a generalized suffix tree T for the set

of sequences Si and after some further preprocessing, uses

this tree to ”spell” the valid models. Valid models verify

two properties:

1. All the prefixes of a valid model are also valid models.

2. When e > 0, spelling a model leads to a set of nodes

v1, . . . , vk in T for which

k
X

j=1

L(vj) ≥ q,

where L(vj) denotes the number of leaves in the sub-

tree rooted at vj .

7. Extending SPELLER to Solve Our
Problem

The valid models identified by the original SPELLER al-

gorithm are already row-maximal. However, they may be

non right-maximal, non left-maximal, and start at different

positions in the sequences.

Under these conditions, our modified version of

SPELLER identifies one row-maximal, right-maximal

approximate-ccc-bicluster with q rows and a maximum of

|C| contiguous columns.

We first extend the algorithm to extract all right-maximal

approximate biclusters by fixing the quorum constraint used

to specify the number of rows/test items necessary to iden-

tify a model as valid, to the value q = 2.

In this context, and in order to be able to solve our prob-

lem, we adapt SPELLER to consider not only a row con-

straint, 2 ≤ qr ≤ |R|, but also an additional column con-

straint, 2 ≤ qc ≤ |C|.
It is not possible to modify SPELLER in order to check

if a valid model that is right-maximal is also left-maximal.

This is so since we can only guarantee that a model is/is

not left-maximal once we have computed all valid models

corresponding to right maximal approximate-ccc-biclusters.

Therefore, in order to achieve left-maximal approximate

biclusters, we must discard valid models which are not left-

maximal in the next step of the algorithm.

In summary, we modify the SPELLER [2] as follows;

1. We redefine the original concept of node-occurrence

to use the tripe (v, verr, p) in order to accommodate

error.

2. We only store valid models that cannot be extended to

the right without losing test items that is valid models

which are both row-maximal and right-maximal.

3. In SPELLER the node-occurrences of a valid model

can start in any position in the sequences. In the mod-

ified version of this algorithm all node-occurrences of a

valid model must start in the same position (same col-

umn in the discretized matrix) in order to guarantee

that they belong to an approximate-ccc-bicluster.

8. Algorithm

The algorithm we propose here is thus based on the fol-

lowing steps;

Step 1: Compute all valid models corresponding to right-

maximal approximate-ccc-biclusters.

Step2: Delete all valid models not corresponding to

left-maximal approximate-ccc-biclusters. Uses all valid

models computed in Step 1.

Step 3: Delete all valid models that represent the

same approximate-ccc-biclusters. Uses all valid models

corresponding to maximal approximate-ccc-biclusters

(both left and right) computed in Step 2.

Step 4: Report all maximal approximate-ccc-biclusters.

9. Complexity

The asymptotic complexity of the algorithm is given by

O(max(|R|2|C|1+e|Σ|e, |R||C|2+e|Σ|e)).

However, in the case of medical data sets, |R| � |C|, so

complexity can be given by

O(|R|2|C|1+e|Σ|e).

10. Results and Discussion

Since we use the suffix tree construct, we must convert

our data set to symbolic form. Before any conversion is

done, we remove all redundant date.

We then apply statistical tests to determine the ranges for

each individual test item, and then assign a symbol from

a defined alphabet to each item. We do this using Σ =

{N, L, H, } to represent normal, low, high and null or missing

values, respectively. We also assign column numbers to each

item for ease of identification during generalized suffix tree

construction.

3

The 24th Annual Conference of the Japanese Society for Artificial Intelligence, 2010

t0 t1 t2 t3 · · ·
T1 N0 N1 H2 H3 · · ·
T2 N0 L1 2 N3 · · ·
T3 L0 L1 N2 H3 · · ·

Figure 2: Data-preprocessing step produces the above ma-

trix.

Table 3: A cross-section of maximal approximate biclusters

ID Pattern # time-points (1st to last) # test items

1 15 LLLLNNHHH t6 − t14 2

2 22 HHHNNNHH t0 − t7 3

3 19 LLLNLLLNNN t8 − t17 3

4 35 NNNHHHHH t1 − t8 5

5 89 HHLLLLLLN t12 − t20 3

We take an absolute starting point for the timeline for

each patient, and then proceed to record values in incre-

ments of 28 calendar days. The resulting matrix for each

patient is given in Figure 2.

When the algorithm is applied to the medical time se-

ries data, it extracts and reports all maximal approximate

biclusters in polynomial time. A cross-section of results is

presented in Table 3.

The table lists a cross-section of the maximal approxi-

mate biclusters attained when e = 3 and minimum row and

column constraints qr = qc = 2.

11. Future Work

We may treat the maximal approximate biclusters as ba-

sic features representing each patient. We can then attempt

to formulate more complex or abstract features by an im-

plication of abstraction hierarchy among the basic features,

allowing for weighting and constraints to reduce on the com-

plexity.

Currently we are considering the extension of formal con-

cept analysis to medical time series data, and time series

data in general.

References

[1] E. Ukkonen, Online Construction of Suffix Trees, Al-

gorithmica, 14(3), pp. 249 – 260, 1995.

[2] M. F. Sagot, Spelling Approximate Repeated or Com-

mon Motifs Using a Suffix Tree, Proc. of the 3rd

Latin American Symposium on Theoretical Informat-

ics, Springer-LNCS 1380, pp. 374 – 390, 1998.

[3] S. C. Madeira and A. L. Oliveira, A Linear Time Bi-

clustering Algorithm for Time Series Gene Expression

Data, Proc. of WABI2005, Springer-LNCS 3692, pp.

39 – 52, 2005.

4

