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IDA*探索におけるトランスポジションテーブルについて
On Transposition Tables for IDA*
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Transposition tables are a well-known method for pruning duplicates in heuristic search. This paper summarizes
recent results we have obtained regarding transposition tables for IDA*. We show that some straightforward imple-
mentations of IDA* with transposition tables (TT) can result in suboptimal solutions being returned. Furthermore,
straightforward implementations of IDA*+TT are not complete. We identify several variants of IDA*+TT which
are guaranteed to return the optimal solution, as well a complete variant. An empirical study shows that IDA*+TT
can significantly improve upon the performance of A* in domain-independent planning.

1. Introduction
Best-first search strategies such as A* [3] are widely used for

solving difficult graph search problems, but a significant limita-
tion of A* is the need to keep all of the generated nodes in mem-
ory. An alternative approach for exploring the search space in a
best-first manner without storing all nodes includes linear-space
algorithms such as IDA* [6]. IDA* performs a series of depth-first
searches with a cutoff bound, such that on each iteration, states
with a cost less than or equal to the bound are expanded. A ma-
jor issue with IDA* when searching a graph is the re-expansion of
duplicate states reached via different paths in the graph, which can
result in a tremendous amount of redundant search.

One method for detecting and pruning duplicate nodes in IDA*
is a transposition table, which caches information about previously
generated nodes. When a node is generated, this cache is consulted
to detect and prune duplicate nodes. As far as we know, transposi-
tion tables (TT) for single-agent search were first proposed in [9]
as one of the components of an “enhanced IDA*”. Although the
use of transposition tables in IDA* has been reported in a number
of domains since then, there has not been an in-depth analysis of
IDA* using a TT (IDA*+TT) in the literature. Although the ba-
sic idea of a transposition table is simple, it turns out that there
are subtle but very important algorithmic details which affect the
admissibility and completeness of a search algorithm that uses a
TT. In addition, the choice of replacement policy for the TT has a
significant impact on the performance of IDA*+TT.

This paper summarizes the results of our recent study of transpo-
sition tables for IDA*. We first describe analytical results showing
that some straightforward implementations of transposition tables
can result in IDA* returning suboptimal solutions, as well as fail-
ing to terminate correctly when there is no solution (incomplete-
ness). We identify IDA*+TT algorithms which are guaranteed to
find the optimal solution (regardless of replacement policy), but

連絡先: 岸本章宏 東京工業大学大学院 情報理工学研究科 数
理・計算機科学専攻　 152-8550 東京都目黒区大岡山　
2-12-1-W8-25 (Email:kishimoto@is.titech.ac.jp)

algorithm Iterative Deepening;
1: bound := h(root); path := [root]; solved := 0;answer:=[];
2: repeat
3: bound := DFS*(root, bound, path);
4: until solved ∪ bound = ∞;
5: if solved then
6: return path;
7: else
8: solution doesn’t exist!;
9: end if

図 1: Iterative Deepening template. DFS* calls one of the recur-
sive search functions described in the text.

are incomplete. We also describe an IDA*+TT algorithm which is
complete. Then, we discuss replacement policies for transposition
tables, and empirically demonstrate the effectiveness of IDA*+TT
in domain-independent planning. Due to space, this paper only
presents the main results. For proofs and more details, see [1, 2].

2. IDA* With Transposition Tables
IDA* performs an iterative-deepening search, as shown in Fig-

ures 1 and 2, where each iteration performs a depth-first search
until the cost (f -value) exceeds bound (Fig 2). Given an admis-
sible heuristic function, IDA* returns a minimal-cost solution, if a
solution exists [6].

When the search space is a graph, IDA* will regenerate dupli-
cate nodes when there are multiple paths to the same node. A
transposition table (TT) is a cache where the keys are states and
the entries contain the estimated cost to a solution state. The TT is
usually implemented as a hash table. During the search, we com-
pute the hash value for the current state, and then perform a hash
table lookup to check if the current state is in the TT. While this im-
poses an additional overhead per node compared to standard IDA*
in order to prune duplicates, this tradeoff can be favorable in ap-
plications such as domain-independent planning where duplicate
nodes are common, and this overhead is small compared to state
generation and heuristic computation.

Since a TT has finite capacity, a replacement policy can be used
to manage this limited capacity, i.e., determine how/which entries
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function DFS(n, bound, path): real
1: if n is a goal state then
2: solved := true; answer := path; return (0);
3: end if
4: if successors(n) = ∅ then
5: new bound := ∞ ;
6: else
7: new bound := min{BD(m)|m ∈ successors(n)};
8: end if
9: return (new bound);

where BD(m) :=

Case 1: ∞, if path + m forms a cycle

Case 2: c(n, m) + DFS(m, bound − c(n, m), path + m),
if c(n, m) + h(m) ≤ bound

Case 3: c(n, m) + h(m), if c(n, m) + h(m) > bound

図 2: DFS for standard IDA*

are retained or replaced when the table is full. In the analysis be-
low, the replacement policy is assumed to behave arbitrarily, so the
results are independent of replacement policy.

We now analyze some properties of IDA*+TT. We assume that
the search space is a finite, directed graph, which may contain cy-
cles.

Definition 1 A search algorithm is exact if it returns the minimum
cost solution in finite time (assuming one exists).

A key property of search algorithms is whether it is guaranteed
to be able to find an optimal solution. Whether a particular instance
of IDA*+TT is exact or not depends on a subtle combination of
algorithmic details (specifically, the interaction among the backup
policy, cycle detection mechanism, and TT replacement policy),
as well as problem characteristics (i.e., whether the heuristic is
consistent).∗1

Let us consider DFSTT1 (Fig 3), a straightforward extension of
DFS which uses a a transposition table. The major difference is
that in the computation of BD(m) (the lower bound on the cost
of reaching a solution from m), calls to the heuristic function h

are replaced with calls to Lookup, which either returns the stored
estimate for a node (if the entry exists), or computes, stores, and
returns the estimate. Since cycle detection is important in applica-
tions such as domain-independent planning, DFSTT1 incorporates
a general, cycle detection mechanism which detects cycles of ar-
bitrary length.

If the capacity of the TT is unlimited (infinite memory), then,
with a consistent heuristic then it is straightforward to show that
DFSTT1 is guaranteed to return the optimal solution (if one ex-
ists).

Proposition 1 Given a consistent heuristic, IDA* using DFSTT1
with an infinite capacity TT is exact.

∗1 For example, the 15-puzzle implementation in [9] combines
IDA*+TT with a consistent heuristic based on Manhattan distance, a
TT replacement strategy based on search depth, and a move generator
eliminating a move placing a piece back to the blank where that piece
was located in the previous state (such a move immediately creates a
cycle).

function DFSTT1(n, bound, path): real
1: if n is a goal state then
2: solved := true; answer := path; return (0);
3: end if
4: if successors(n) = ∅ then
5: new bound := ∞;
6: else
7: new bound := min{BD(m)|m ∈ successors(n)};
8: end if
9: store (n, new bound) in TT ;

10: return (new bound);

where BD(m) :=

Case 1: ∞, if path + m forms a cycle

Case 2: c(n, m) + DFSTT1(m, bound − c(n, m), path + m),
if c(n, m) + Lookup(m) ≤ bound

Case 3: c(n, m) + Lookup(m),
if c(n, m) + Lookup(m) > bound

function Lookup(m, TT ): real
1: if m is is in TT then
2: return esti(m);
3: else
4: store (m, h(m)) in TT
5: return h(m)
6: end if

図 3: DFSTT1 - straightforward (but non-exact) extension of DFS using a
transposition table; uses auxiliary Lookup function

On the other hand, if the TT capacity is finite, it turns out that
DFSTT1 can return a suboptimal solution, depending on the re-
placement policy.

Proposition 2 Given a consistent heuristic, IDA* using DFSTT1
with a finite-capacity TT is not exact (for some replacement poli-
cies).

The definition of DFSTT1 in Fig 3 does not specify a TT re-
placement policy. While there exist replacement policies such
that IDA*+DFSTT1 always returns the optimal solution, this is
not quite satisfactory, because the TT is essentially a cache, and
it is preferable to identify IDA*+TT algorithms which are exact
regardless of TT replacement policy.

In fact, even with unlimited memory and no replacement, DF-
STT1 is not exact if the heuristic is inconsistent.

Proposition 3 Given an admissible, inconsistent heuristic, IDA*
using DFSTT1 is not exact.

3. Exact IDA* with a Transposition Table
The main problem with DFSTT1 is the interaction between the

transposition table and cycle detection mechanism, which can re-
sult in an incorrect value (∞) being stored in the TT. This is fur-
ther complicated by the use of a replacement strategy when TT
capacity is limited. We can correct this problem by keeping track
of the lower bound to return to the parent call (bound) and the
estimate to be stored in the TT (esti) separately. This modified
algorithm, DFSTT2, is shown in Fig 4. Note that DFSTT2 returns
a pair of values, (new esti, new bound) (Lines 11,2). The ET
computation uses the first return value (index “[0]”), and the BD
computation uses the second value (index “[1]”).

Theorem 1 Given an admissible heuristic function,
IDA*+DFSTT2 is exact.



function DFSTT2(n, bound, path): (real,real)
1: if n is a goal state then
2: solved := true; answer := path; return (0, 0);
3: end if
4: if successors(n) = ∅ then
5: new esti := ∞; new bound := ∞;
6: else
7: new esti := min{ET(m)|m ∈ successors(n)};
8: new bound := min{BD(m)|m ∈ successors(n)};
9: end if

10: store (n, new esti)in TT ;
11: return (new esti, new bound);

Where ET(m) :=

Case 1: c(n, m) + Lookup(m), if path + m forms a cycle

Case 2: c(n, m) + DFSTT2(m, bound − c(n, m), path + m)[0],
if c(n, m) + Lookup(m) ≤ bound

Case 3: c(n, m) + Lookup(m),
if c(n, m) + Lookup(m) > bound

BD(m) :=

Case 1: ∞, if path + m forms a cycle

Case 2: c(n, m) + DFSTT2(m, bound − c(n, m), path + m)[1],
if c(n, m) + Lookup(m) ≤ bound

Case 3: c(n, m) + Lookup(m),
if c(n, m) + Lookup(m) > bound

図 4: DFSTT2: An exact algorithm

A different exact approach was implemented in the Rolling-
Stone sokoban solver [5]. Assume (without loss of generality)
unit edge costs. Instead of storing the lowest cost estimate found
under an exhaustively searched node in the TT, this policy stores
bound−g(n)+1.∗2 Rather than storing this value in the tree after
searching the subtree, the value is stored in the TT before descend-
ing into the tree. Cycling back into this state will result in g(s) be-
ing higher than its previous value, resulting in a cutoff (thus, this
strategy does not require a separate cycle detection mechanism).
It is easy to see that this RollingStone (RS) strategy is exact:∗3

Let g1 and g2 be g-values of n via paths p1 and p2, respectively.
Assume RS first reaches n via p1, and (n, bound − g1 + 1) has
been stored in the TT. Suppose that we later encounter n via p2. If
g1 ≤ g2, a cut off happens because bound−g1 +1+g2 > bound

(p2 is longer than p1). If g1 > g2, we reexpand n to try to find a
solution within the current bound.

We now propose DFSTT2+RS, a hybrid strategy combining
DFSTT2 and RS. Instead of storing (n, new esti), we store
(n, max{new esti, esti(n), bound − g(n) + ε}) where ε is the
smallest edge cost (ε = 1 in our planning domains below). In this
hybrid strategy, the value is stored after the search under node m

is exhausted, while RS stores bound−g(n)+ε before descending
into the tree. For all nodes, the TT entry for DFSTT2+RS domi-
nates both DFSTT2 and RS, and it is easy to extend the proof of
exactness for DFSTT2 to show that DFSTT2+RS is exact.

An alternate approach to addressing the corruption of finite TTs
by cycles is to completely ignore cycles. This algorithm, DFST-
TIC, is identical to DFSTT1 (Fig 3), except that the BD com-
putation rule is the following: (case 1) BD(m) := c(n, m) +

DFSTTIC(m, bound − c(n, m), path + m), if c(n, m) +

Lookup(m) ≤ bound, and (case 2) BD(m) := c(n, m) +

Lookup(m), if c(n, m) + Lookup(m) > bound. Unlike the BD

∗2 With non-unit edge costs, bound − g(n) + ε is stored, where ε the
smallest edge weight in the graph.

∗3 Since RS detects cycles using the TT, the replacement nodes must not
replace nodes on the current search path - this is easily enforced.

computation rule for DFSTT1, this modified rule lacks a cycle
check. DFSTTIC is easily seen to almost always returns the opti-
mal solution path in finite time. However, it can fail to terminate in
graphs that contain a cycle of cost 0. Thus, DFSTTIC is not exact.

3.1 Complete, Exact IDA*+TT
In addition to exactness, another important property is com-

pleteness:

Definition 2 A search algorithm is complete if it is exact, and
returns no solution in finite time when no solution exists.

None of the IDA*+TT variants described above is complete. We
have developed DFSTT3, which is a complete, IDA*+TT algo-
rithm based on DFSTT2. The main idea is to store not only esti,
but also the g-cost associated with esti. When we revisit a node,
the g-cost information allows us to determine whether we are re-
visiting a node that has already been reached via a shorter path.
The lookup function is similar to Lookup, except that it retrieves
(and stores, if no entry was present) the g-cost in addition to esti.
Additionally, esti(n) is passed as an argument of the recursive
DFSTT3 function to be used as a conservative estimation when a
cycle is detected. This allows us to label such nodes as dead ends.
As with DFSTT2, this complete algorithm can be combined with
RS. Details and proof of completeness are in [1]

4. Replacement Policies
So far, we have identified a set of transposition table update

strategies which robustly guarantees the exactness of IDA*+TT.
We now describe several TT replacement policies that we have
implemented. Since our analysis of DFSTT2 above made no as-
sumptions about replacement policy, all of the replacement poli-
cies below can be safely used without compromising the exactness
of these algorithms.

A trivial policy is no replacement – add entries until the table is
full, but entries are never replaced (although the stored estimated
values for the cached nodes will be updated as described above).
Stochastic Node Caching (SNC) is a policy based on [7], which
seeks to only cache the most commonly revisited nodes in memory
by probabilistically storing the state with some constant probabil-
ity p. After the table is full, there is no replacement.

The standard practice for TT replacement 2-player games is
collision-based replacement, which decides to either replace or re-
tain the entry where a hash collision for a table entry occurs. The
most common collision resolution policy keeps the value associ-
ated with the deeper search (which has a larger subtree size, and
presumably saves more work).

An alternative to collision-based replacement is batch replace-
ment, which has also been studied in two-player games [8]. This
is similar to garbage collection, and is triggered by running out of
space. In this scheme, memory management for the TT is done us-
ing a dedicated object memory pool – there is a pool (linked list)
of TT entry objects which are initially allocated and empty. When
an new TT entry object is requested, the first available element
from the pool is returned; when a TT entry is “freed”, the object is
marked and returned to the pool.

When the TT becomes full, the nodes are sorted based on one
of the replacement criteria: (a) subtree size (prefer larger sub-
trees since they tend to save the most computation), (b) backed



Algorithm TT Replacement Num Tot. Runtime
Policy Solved (seconds)

A* 173 539
DFS No TT 128 178098

DFSTT2 TT, No Replace 183 73477
DFSTT2 Replace 0.3, subtree size 194 52256

RS Replace 0.3, subtree size 195 68319
DFSTT2+RS TT, No Replace 189 106147
DFSTT2+RS Stochastic Caching, p=0.001 187 213765
DFSTT2+RS Replace 0.3, est 194 40290
DFSTT2+RS Replace 0.3, subtree size 195 66960
DFSTT2+RS Replace 0.3, access freq. 194 39187
DFSTT2+RS Collision, est 189 141249
DFSTT2+RS Collision, subtree size 192 114057
DFSTT3+RS Replace 0.3, subtree size 152 170296

表 1: Performance on 204 IPC planning instances, 2GB memory
total for solver, 10 hours/instance. Runtimes include successful
runs only.

up cost estimate for the node (prefer the most promising nodes),
and (c) the number of accesses for the entry (prefer frequently ac-
cessed entries). Then, the bottom R% of the entries are chosen
and marked as “available”. These entries are not immediately dis-
carded – batch replacement merely designates the set of entries
which will be overwritten (with equal priority) as new nodes are
generated, so the entries remain accessible until overwritten.

5. Experimental Results
We implemented the IDA* variants described in this paper as

a replacement search algorithm for a recent version of the Fast-
Downward domain-independent planner using abstraction heuris-
tics [4], and evaluated their performance. The following TT re-
placement strategies were considered: (a) no replacement, (b)
stochastic caching, (c) collision-triggered replacement based on
subtree size and estimated cost (d) batch replacement based on
subtree size, estimated cost, and access frequency.

The fraction of nodes marked as available by batch replacement
was R = 30%. The Fast Downward abstraction size was 1000 for
all configurations. The algorithms were tested on a set of 204 in-
stances from the IPC planning competition (IPC3: depots, driver-
log, freecell, zenotravel, rovers, satellite; IPC4: pipes tankage,
pipes no tankage, airport, psr small; IPC6: sokoban, pegsol).∗4

Each algorithm was allocated 10 hours/instance. The experiments
(single-threaded) were run on a 2.8GHz Xeon. 2GB RAM was al-
located for the entire solver (including the transposition table and
abstraction table) – the TT is automatically sized to fully use avail-
able memory, depending on the type of information needed by the
TT replacement policy (i.e., esti, g-value, and auxiliary data used
by the replacement policy). The results are shown in Table 1.

A* solved 173 problems, but exhausted memory on the remain-
ing problems The total runtime (540 seconds) for A* is very low
compared to the IDA* variants because the search terminates when
memory is exhausted. Note that the DFS+TT variants also solve
these easy problems quickly. DFSTT2+RS solves 182 problems
(9 more than A*) within 30 minutes (total); the remainder of the
66960 seconds were spent on the most difficult instances which
were solved by DFSTT2+RS (but not solved by A*).

It is clear that using a transposition table results in a significant

∗4 To avoid wasting a lot of time on problems that couldn’t be solved by
any configuration, our benchmark set was selected from these problem
sets based on preliminary experiments.

improvement over plain IDA*. Among the IDA*+TT variants, the
DFSTT2+RS hybrid strategy with subtree size based replacement
resulted in the best overall performance.

The batch replacement-marking methods significantly outper-
formed IDA*+TT without replacement and SNC, showing the im-
portance of replacement. Interestingly, some of the variants us-
ing collision-based replacement performed worse than no replace-
ment, showing that choice of replacement policy is critical for per-
formance.

The DFSTT3 strategy performed poorly compared to DFSTT2
and RS, showing that there is a significant price to be paid when
we store conservative values in the TT in order to guarantee com-
pleteness. An evaluation of DFSTT3 with unsolvable problems is
future work.

6. Conclusions
Our experimental results show that TT can significantly improve

the performance of IDA*, and that replacement policy has a sig-
nificant impact on IDA*+TT performance. While our theoretical
results show that in general using arbitrary replacement strategies
with straightforward implementations of IDA*+TT can result in
suboptimal solutions being returned, we have shown that there ex-
ist strategies such as DFSTT2 which are provably exact, regardless
of replacement strategies, allowing us to safely apply the most ef-
fective replacement policies.
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