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A Symbolic Representation for Trajectory Data
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In this paper, we propose a novel symbolic representation for trajectory data. A symbolic representation allows us
to represent the original data into smaller and less complex symbol components that are beneficial for storage and
computation. Previous works on trajectory representation only focus on trajectory shapes and ignore the position
features. Therefore, they may fail to distinguish trajectories that have similar shapes but different positions, which
are necessary in many trajectory data mining applications such as delivery, transportation and weather forecast. In
this work, the positions of trajectories are considered and play important roles in our representation. Experimental
results on four real data sets have shown the effectiveness of our method.

1. Introduction

With the improvement of satellite, GIS, RFID, sensor

and wireless technologies, trajectory data has appeared in

various real world applications. For example, in Starkey

Project [Starkey], an automated radio telemetry system can

automatically track locations of deers, elks and cattle to

generate trajectories of these species. In weather forecast,

the path of a hurricane can be tracked by using satellite

photos and radar [Hurricane]. In transportation, tracks of

buses and trucks can be collected via a mobile device or a

wireless network infrastructure [Rtreeportal]. More gener-

ally, if there is a moving object, there will have a trajectory

data, thus trajectory data occurs virtually in every science,

transportation and zoology. Therefore, there is a need for

analyzing trajectory data effectively to extract useful infor-

mation.

Although there is a dramatical improvement of comput-

ing and storage capability, the rapid increase of data volume

is still a challenge for the performance of computer net-

works and internet systems, which necessitates to design

an efficient representation and an efficient storage mecha-

nism. In this work, we tackle the problem of trajectory

representation where almost all trajectories are long and

complex. Despite the fact that there is an explosion of rep-

resentations in time series data, which are a series of one-

dimensional real numbers, there are few representations of

trajectory data [Shatkay 95], [Vlachos 02], [Lee 07]. This

may be surprising since trajectory data can be considered

as a multi-dimensional time series data. A possible reason

is that working with trajectory data is more complex than

working with time series data.

Most trajectory data mining methods in the literature

only focus on trajectory shape similarity search which is the

task of grouping similar trajectory shapes together. These

methods lead to several applications such as interactive gen-

eration of motions and discovery of subtle patterns during

cellular mitoses in biological sciences [Vlachos 02]. How-

ever, they cannot be used in applications such as naviga-
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tion systems and location-based information systems. For

example, the prediction of elk, deer and cattle spatial distri-

bution is helpful in land planning, stocking allocation and

population management [Starkey]. Although these species

live in the same region, they have different location distri-

butions. If we do not consider the position of trajectories

in the representation, we may lose this important feature.

In hurricane forecast [Hurricane], an accurate prediction of

the landfall location is of primary importance in hurricane

forecast that helps the public to complete preparations and

evacuations. Therefore, the position of hurricane trajectory

must be considered in analyzing hurricane trajectories.

In this paper, we propose a trajectory representa-

tion, called Trajectory Symbolic Aggregate approXimation

(TraSAX), which is an extension of SAX [Lin 03]. TraSAX

represents the original trajectory into smaller and less com-

plex symbol components where the position of trajectory is

considered.

The rest of this paper is organized as follows. In section

2, we describe our proposal to represent trajectory data.

Section 3 shows experiments of our proposal in a clustering

task on four real trajectory datasets. Finally, conclusions

and future directions are given in section 4.

2. TraSAX representation

TraSAX allows to represent arbitrary length trajectories

into equal length strings. This process includes three steps:

TraSAX first normalizes the region size of the input trajec-

tory set into a fixed region size, then Piecewise Aggregate

Approximation (PAA) [Keogh 01] is employed to transform

each trajectory into a PAA representation. Finally, each

PAA representation is symbolized into one string.

2.1 Region Size Normalization

The region size of a trajectory set is defined as the Min-

imum Bounding Rectangle (MBR) [Vlachos 02] that con-

tains all trajectories of the trajectory set. Our method can

be utilized for multi-dimensional trajectory representation,

however, for the ease of description, we assume that the

dimensions of trajectories are two. In an x-y coordinate

system, the region size of a trajectory set T is represented

by two endpoints LT (low point) and HT (high point) of its

major diagonal. It will be:
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Figure 1: TraSAX representation. a) MBRs and their corresponding PAA representations, b) Mapping from PAA represen-

tation into symbolic representation, in this example, TraSAX representation for the input trajectory: AAA001AAA011-

AAB111ABB111ABB011BBB011ABB001.

Region size(T) = (LT , HT ) (1)

where LT = (xLT
, yLT

), H = (xHT
, yHT

), xLT
≤ xHT

and

yLT
≤ yHT

.

In different applications, trajectory sets have different re-

gion sizes, i.e., the region size of a house robot trajectory

could be some meters, a campus bus could have a region size

of kilometers, and the trajectory region size of hurricanes

could be in the order of hundred of kilometers. Therefore,

we should normalize the trajectory region size being ana-

lyzed into a fixed region size. In our experiment, this fixed

region size is [0, 1] × [0, 1]. A trajectory Tri = {(xi1 , yi1),

(xi2 , yi2), . . ., (xilenTri
, yilenTri

)} belonging to a trajec-

tory set T is represented in the new region as TRi = {(Xi1 ,

Yi1), (Xi2 , Yi2), . . ., (XilenT ri
, YilenTri

)}, where (Xik
, Yik

)

is calculated as follows:

8

<

:

Xik
=

xik
−xLT

xHT
−xLT

Yik
=

yik
−yLT

yHT
−yLT

2.2 PAA representation for trajectory data

After normalizing the input trajectory set into the new

region of [0, 1] × [0, 1], each trajectory will be converted

into the PAA representation. Given a trajectory TRi =

{(Xi1 , Yi1), (Xi2 , Yi2), . . ., (XilenT ri
, YilenTri

)}, we divide

it into w equal sub-trajectories (w < lenTri, typically w ≪

lenTri). In order to reduce the dimension of trajectories,

each sub-trajectory is represented by one MBR, where the

mathematical mean of each MBR becomes the representing

point of that MBR and is calculated as follows:

8

<

:

Xik
= w

lenTri

P

Xij
∈MBRk

Xij

Y ik
= w

lenTri

P

Yij
∈MBRk

Yij

By this process, the PAA approximation of trajectory

Tri is represented by a two dimensional vector: TRi =

{(Xi1 , Y i1), (Xi2 , Y i2), . . ., (XilenT ri
, Y ilenT ri

)}. Fig. 1a

illustrates the idea of this step.

2.3 Transforming PAA into a Symbolic Rep-

resentation

We employ “breakpoints” defined in [Lin 03] to trans-

form PAA representation into a symbolic representation.

In [Lin 03], the “breakpoints” are defined with an objec-

tive to produce symbols with equiprobability. However, in

this work, our proposal is to have a symbolic representa-

tion where the position of a trajectory is considered, hence

we have invented a discretization technique which defines a

uniform grid. The breakpoints divide the normalized region

into a × a equal-sized cells. In our experiments, we use the

same breakpoint set for both X and Y dimensions.

Definition 1. Breakpoints for trajectory are the sorted

list of number B = β0, β1, . . . , βa where βi = i
a

(0 ≤ i ≤ a).

Breakpoints divide the region of [0, 1] × [0, 1] into a ×

a equal-sized cells and each cell is represented by a unique

symbol. We define symbols for each axis then combine them

together to determine a symbol for each cell. Mathemati-

cally, in each axis, the ith segment between two conjunctive

breakpoints βi−1 and βi is defined as either an alphabet:

alphabet(i) for X-axis or a number: number(i) for Y-axis,

where alphabet(i) contains (a-i) characters ‘A’ and (i-1)

characters ‘B’ while number(i) contains (a-i) characters ‘0’

and (i-1) characters ‘1’:

8

>

>

>

<

>

>

>

:

alphabet(i) = AA . . . A
| {z }

(a−i)

BB . . . B
| {z }

(i−1)

number(i) = 00 . . . 0
| {z }

(a−i)

11 . . . 1
| {z }

(i−1)

For example, let a=4, alphabet(1) = ‘AAA’, alphabet(2)

= ‘AAB’, number(1) = ‘000’, number(2) = ‘001’. We use

this symbol set to encode cells of the trajectory region in-

stead of using a unique character per one cell to guaran-

tee that symbol-based distance functions applied in our

symbolic space will have a close correlation with the cor-

responding distance measures defined on the original space.

In [Shieh 08], binary bits have also been used to represent

time series where distance value is obtained from a lookup
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table. In contrast, the distance value of TraSAX is con-

tained in the representation itself. For example, we achieve

distance between ‘00’ and ‘11’ is greater than the distance

between ‘00’ and ‘01’ in almost compression-based distance

functions.

Once symbol sets of X-axis and Y-axis have been defined,

the PAA representation TRi = {(Xi1 , Y i1), (Xi2 , Y i2),

. . ., (XilenT ri
, Y ilenT ri

)} is represented as a string dTRi =
bXi1 ,bYi1 , bXi2 ,bYi2 ,. . ., bXilenT ri

,bYilenTri
, where

(

bXij = alphabet(k) if βk−1 ≤ Xij < βk

bYij = number(l) if βl−1 ≤ Y ij < βl

Fig. 1b shows an example of this definition where

a=4 and the TraSAX representation of the input trajec-

tory is AAA001AAA011AAB111ABB111ABB011-

BBB011ABB001.

3. Experimental Results

Our representation can be applied to various trajectory

data mining tasks including clustering, classification, in-

dexing, finding motif of subsequence and anomaly subse-

quence detection. In this paper, we verify our proposal by

using the hierarchical clustering with Compression-Based

Dissimilarity Measure (CDM) [Keogh 04] in four real tra-

jectory datasets. We have chosen the hierarchical cluster-

ing task since it is one of the most commonly used clus-

terings [Berkhin 02] and it provides a visual dendrogram

to clearly understand the clustering process. Beside that,

CDM is a parameter-free algorithm and [Keogh 04] shows

that CDM performs significantly better than almost other

distance/dissimilarity measures. In addition, the results of

the original data, a shape-based [Lin 03], the 2 Dimensional

Discrete Fourier Transform (2D DFT) [Shatkay 95] repre-

sentations are also obtained to be compared with our pro-

posal.

3.1 Data sets

Four real trajectory datasets: ASLclean, trackingPoor,

cameraMouse [Keogh 06] and ourRobot are employed to

verify our proposal. OurRobot data contains trajectories

of one robot in one of our projects [Suzuki 09]. In the task

of ourRobot, the objective of each robot is to visit as many

cells in the workspace as possible in a limited time. Inter-

ested readers are referred to [Suzuki 09]. Basic statistics

and a plot of the four trajectory data are shown in Table 1

and Fig. 2, respectively.

3.2 Clustering Results and Comparisons

The results of Original data, Shape-based, 2D DFT and

TraSAX representations are shown in Fig. 3. We have four

datasets, so we would hope to get a clustering result of four

clusters where each cluster contains trajectories of only one

dataset. In hierarchical clustering, to achieve k clusters, we

just have to cut the k -1 [Berkhin 02] longest links from the

root, in our case k=4. Fig. 3d shows a perfect result of

our proposal where each sub-tree after the cutting contains

trajectories of only one dataset. None of Original, Shape-

based or 2D DFT representations obtain the perfect result.

We use three metrics Q [Keogh 04], Normalized Mutual

Information (NMI ) and Accuracy (Ac) [Amig 09] to eval-

uate the quality of clustering results (due to lack of space,

interested readers of these metrics are referred to [Keogh 04]

and [Amig 09]). The results in Table 2 and Fig. 3 confirm

the superiority of our proposal. Firstly, our representation

outperforms 2D DFT representation by 25%. Secondly, Fig.

3b shows that if we only consider trajectory shape property,

we lose useful information. Finally, TraSAX shows a better

performance than the original data representation as shown

in Fig. 3a.

Table 1: Properties of real trajectory datasets (# traj. rep-

resents the number of trajectories, avg. length represents

the average length of trajectories)

No. Dataset Name # traj. avg. length

1 ASLclean (AC) 23 69

2 trackingPoor (TP) 23 543

3 cameraMouse (CM) 15 1151

4 ourRobot (OR) 4 6400
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Figure 2: Shape and distribution of four real datasets

Table 2: Q, NMI and Ac results of Original data, Shape-

based, 2D DFT and TraSAX representations.

Original Shape-based DFT TraSAX

Q 0.5 0.5 0.75 1

AC 0.75 0.688 0.813 1

NMI 0.75 0.508 0.696 1

4. Conclusions and Future Works

In this paper, we have proposed a novel symbolic repre-

sentation for trajectory data. Our representation has three

main advantages: it reduces dimensions of the input tra-

jectory during the discretization process by symbolic repre-

sentation, and it allows to increase accuracy compared to

the original data. In addition, our representation gives an

empirical evidence that the position property of trajectory

3



The 24th Annual Conference of the Japanese Society for Artificial Intelligence, 2010

CM 1

CM 2

TP 1

TP 4

AC 1

AC 3

AC 2

AC 4

TP 3

TP 2

CM 3

CM 4

OR 1

OR 2

OR 3

OR 4

(a) Original data

CM 1

CM 3

OR 2

CM 2

OR 1

CM 4

OR 4

AC 1

AC 2

AC 3

AC 4

TP 1

TP 2

TP 3

TP 4

OR 3

(b) Shape-based representation

CM 1

CM 2

CM 4

CM 3

OR 3

OR 1

OR 2

TP 1

TP 2

TP 3

TP 4

AC 1

AC 2

AC 3

AC 4

OR 4

 

 

(c) 2D DFT representation
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Figure 3: Experimental results of four trajectory datasets where AC, OR, TP and CM stand for ASLclean, ourRobot,

trackingPoor and cameraMouse, respectively. The vertical dashed line in each plot is the cutting line to achieve four clusters.

is important in trajectory representation. The clustering

results on three benchmark data sets and one trajectory

data set from our project have shown the effectiveness of

our proposal.

As future works, we plan to employ our proposal in other

trajectory data mining tasks including classification, in-

dexing, finding motifs of sub-trajectory and anomaly sub-

trajectory detection. We also plan to study effects of in-

jecting various degrees and types of noises to our proposal.

Another direction of research is to improve the performance

in speed when the size of input trajectory datasets increases,

e.g., to terabytes.
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