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In this paper, we propose a novel method for a robot to detect robot-directed speech from other speech: to
distinguish speech that users speak to a robot from speech that users speak to other people or to himself. The
originality of this work is the introduction of Multimodal Semantic Confidence measure, which is used for domain
classification of input speech based on deciding whether the speech can be interpreted as a feasible action under the
current physical situation in an object manipulation task. This measure is calculated by integrating speech, object,
and motion confidence with weightings that are optimized by logistic regression. Then we integrate this measure
with gaze tracking, and conduct experiments under conditions of natural human-robot interactions. Experimental
results show that the proposed method achieved a high performance of 94% and 96% in average recall and precision
rates for robot-directed speech detection.

1. INTRODUCTION
Robots are now being designed to be a part of the every-

day lives of people in social and home environments. One
of the key issues for practical use of such robots is the de-
velopment of user-friendly interfaces. Speech recognition is
one of our most effective communication tools for use in
a human-robot interface. For such an interface, the capa-
bility to detect robot-directed (RD) speech is crucial. For
example, a user’s speech directed to another human listener
should not be recognized as commands directed to a robot.

To resolve this issue, many works have used human physi-
cal behaviors to estimate the target of the user’s speech. For
example, [Yonezawa 09] proposed an interface for a robot
to communicate with users based on detecting the gaze di-
rection during their speech. However, this kind of method
raises the possibility that users may say something unre-
lated to the robot even while they are looking at it.

To settle such an issue, the proposed method is based not
only on gaze tracking but also on domain classification of
the input speech into RD speech and out-of-domain (OOD)
speech. Domain classification for robots in previous works
were based mainly on using linguistic and prosodic features
[Takiguchi 08]. However, this kind of methods also raised
the issue of requiring users to adjust their prosody to fit the
system, which causes them an additional burden.

In this work, we introduce a multimodal semantic confi-
dence (MSC) measure for domain classification. MSC has
the key advantage that it is based on semantic features that
determine whether the speech can be interpreted as a fea-
sible action under the current physical situation.

The target task of this work is an object manipulation
task in which a robot manipulates objects according to a
user’s speech. An example of such a task in a home envi-
ronment is a user telling a robot to “Put the dish in the
cupboard.” Solving this task requires robots to deal with
speech and image signals and to carry out a motion in ac-
cordance with the speech. Therefore, the MSC measure is
calculated by integrating information obtained from speech,
object images, and robot motion.
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Figure 1: Robot used in the
object manipulation task.

Figure 2: Example of object
manipulation tasks.

2. Object Manipulation Task

In this work, we assume that humans use a robot to per-
form an object manipulation task. In this task, users com-
mand the robot (Fig. 1) by speech to manipulate objects
on a table located between the robot and the user. In the
example shown by Figure 2, the robot is told to place Ob-
ject 1 (Kermit) on Object 2 (big box) by the command
speech “Place-on Kermit, and the robot executes an action
according to this speech. The solid line in Fig. 2 shows the
trajectory of the moving object manipulated by the robot.

The commands used in this task are represented by a
sequence of phrases, each of which refers to a motion, an
object to be manipulated (“trajector”), or a reference ob-
ject for the motion (“landmark”). In the case shown in
Fig. 2, the phrases for the motion, trajector, and land-
mark are “Place-on,” “Kermit,” and “big box,” respec-
tively. To execute a correct action according to such a com-
mand, we used the speech understanding method proposed
by [Iwahashi 07] to interpret the input speech as a possible
action for the robot under the current physical situation.
However, for an object manipulation task in a real-world
environment, there may exist OOD speech such as chatting
or noise. Consequently, an RD speech detection method
should be used.

3. Proposed RD Speech Detection
Method

The proposed RD speech detection method is based on in-
tegrating gaze tracking and the MSC measure. A flowchart
is given in Fig. 3. First, a Gaussian mixture model based
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Figure 3: Flowchart of the proposed method.

voice activity detection method is carried out to detect
speech from the continuous audio signal, and gaze track-
ing is performed to estimated the gaze direction from the
camera images. If the proportion of the user’s gaze at the
robot during her/his speech is higher than a certain thresh-
old η, the robot judges that the user was looking at it while
speaking. The speech during the periods when the user is
not looking at the robot is rejected. Then, for the speech
detected while the user was looking at the robot, speech
understanding is performed to output the indices of a tra-
jector object and a landmark object, a motion trajectory,
and corresponding phrases, each of which consists of rec-
ognized words. Then, three confidence measures, i.e., for
speech (CS), object image (CO) and motion (CM ), are cal-
culated. The weighted sum of these confidence measures
with a bias is inputted to a logistic function. The bias and
the weightings {θ0, θ1, θ2, θ3}, are optimized by logistic re-
gression. Here, the MSC measure is defined as the output of
the logistic function, and it represents the probability that
the speech is RD speech. If the MSC measure is higher than
a threshold δ, the robot judges that the input speech is RD
speech and executes an action according to it. In the rest
of this section, we give details of the speech understanding
process and the MSC measure.

3.1 Speech Understanding
Given input speech s and a current physical situation

consisting of object information O and behavioral context
q, speech understanding selects the optimal action a based
on a multimodal integrated user model. O is represented
as O = {(o1,f , o1,p), (o2,f , o2,p) . . . (om,f , om,p)}, which in-
cludes the visual features oi,f and positions oi,p of all ob-
jects in the current situation, where m denotes the number
of objects and i denotes the index of each object that is dy-
namically given in the situation. q includes information on
which objects were a trajector and a landmark in the previ-
ous action and on which object the user is now holding. a is
defined as a = (t, ξ), where t and ξ denote the index of the
trajector and a trajectory of motion, respectively. A user
model integrating the five belief modules – (1) speech, (2)
object image, (3) motion, (4) motion-object relationship,
and (5) behavioral context – is called an integrated belief.
Each belief module and the integrated belief are learned by
the interaction between a user and the robot in a real-world
environment.
3.1.1 Lexicon and Grammar

The robot initially had basic linguistic knowledge, includ-
ing a lexicon L and a grammar Gr. L consists of pairs of
a word and a concept, each of which represents an object
image or a motion. The words are represented by HMMs.
The concepts of object images and motions are represented

by Gaussian functions and HMMs, respectively.
The word sequence of speech s is interpreted as a con-

ceptual structure z = [(α1, wα1), (α2, wα2), (α3, wα3)],
where αi represents the attribute of a phrase and has a
value among {M,T,L}. wM , wT and wL represent the
phrases describing a motion, a trajector, and a landmark,
respectively. For example, the user’s utterance “Place-on
Kermit big box” is interpreted as follows: [(M , Place-on),
(T , Kermit), (L, big box)]. The grammar Gr is a statistical
language model that is represented by a set of occurrence
probabilities for the possible orders of attributes in the con-
ceptual structure.
3.1.2 Belief Modules and Integrated Belief

Each of the five belief modules in the integrated belief is
defined as follows. First, the belief module of speech, BS ,
is represented as the log probability of s conditioned by z,
under lexicon L and grammar Gr. The belief module of
object image, BO, is represented as the log likelihood of
wT and wL given the trajector’s and the landmark’s visual
features ot,f and ol,f . The belief module of motion, BM ,
is represented as the log likelihood of wM given trajectory
ξ. The belief module of motion-object relationship, BR,
represents the belief that in the motion corresponding to
wM , features ot,f and ol,f are typical for a trajector and a
landmark, respectively, under a parameter set R. The belief
module of behavioral context, BH , represents the belief
that the current speech refers to object o, given behavioral
context q, with a parameter set H.

Given weighting parameter set Γ=
{
γ1..., γ5

}
, the degree

of correspondence between speech s and action a is repre-
sented by integrated belief function Ψ, written as

Ψ(s,a,O, q, L,Gr, R,H,Γ) =

max
z,l

(
γ1 logP (s|z;L)P (z;Gr) [BS ]

+γ2
(
logP (ot,f |wT ;L) + logP (ol,f |wL;L)

)
[BO]

+γ3 logP (ξ|ot,p, ol,p,wM ;L) [BM ]

+γ4 logP (ot,f − ol,f |wM ;R) [BR]

+γ5
(
BH(ot, q;H) +BH(ol, q;H)

))
, [BH ]

(1)
where l denotes the index of landmark, ot and ol denote
the trajector and landmark, respectively, and ot,p and ol,p
denote the positions of ot and ol, respectively. Then, as the
meaning of speech s, corresponding action â is determined
by maximizing Ψ:

â = (t̂, ξ̂) = argmax
a

Ψ(s, a,O, q, L,Gr, R,H,Γ). (2)

Finally, â = (t̂, ξ̂), l̂, and ẑ are outputted from the speech
understanding process.

3.2 MSC Measure
Next, we describe the proposed MSCmeasure. MSCmea-

sure CMS is calculated based on the outputs of speech un-
derstanding and represents an RD speech probability. For
input speech s and current physical situation (O, q), speech
understanding is performed first, and then CMS is calcu-
lated by the logistic regression as

CMS(s,O, q) = P (domain = RD|s,O, q)

=
1

1 + e−(θ0+θ1CS+θ2CO+θ3CM )
.

(3)

Given a threshold δ, speech s with an MSC measure
higher than δ is treated as RD speech. The BS , BO, and
BM are also used for calculating CS , CO, and CM , each of
which is described as follows.
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3.2.1 Speech Confidence Measure
Speech confidence measure CS is used to evaluate the re-

liability of the recognized word sequence ẑ. It is calculated
by dividing the likelihood of ẑ by the likelihood of a max-
imum likelihood phoneme sequence with phoneme network
Gp, and it is written as

CS(s, ẑ;L,Gp) =
1

n(s)
log

P (s|ẑ;L)
maxu∈L(Gp) P (s|u;A)

, (4)

where n(s) denotes the analysis frame length of the input
speech, P (s|ẑ;L) denotes the likelihood of ẑ for input speech
s and is given by a part of BS , u denotes a phoneme se-
quence, A denotes the phoneme acoustic model used in BS ,
and L(Gp) denotes a set of possible phoneme sequences ac-
cepted by Japanese phoneme network Gp. For speech that
matches robot command grammar Gr, CS has a greater
value than speech that does not match Gr.

The speech confidence measure is conventionally used as
a confidence measure for speech recognition [Jiang 05]. The
basic idea is that it treats the likelihood of the most typi-
cal (maximum-likelihood) phoneme sequences for the input
speech as a baseline. Based on this idea, the object and
motion confidence measures are defined as follows.
3.2.2 Object Confidence Measure

Object confidence measure CO is used to evaluate the re-
liability that the outputted trajector ot̂ and landmark ol̂
are referred to by ŵT and ŵL. It is calculated by dividing
the likelihood of visual features ot̂,f and ol̂,f by a baseline

obtained by the likelihood of the most typical visual fea-
tures for the object models of ŵT and ŵL. In this work,
the maximum probability densities of Gaussian functions
are used as these baselines. Then, the object confidence
measure CO is written as

CO(ot̂,f , ol̂,f ,ŵT , ŵL;L) =

log
P (ot̂,f |ŵT ;L)P (ol̂,f |ŵL;L)

maxof P (of |ŵT )maxof P (of |ŵL)
,

(5)

where P (ot̂,f | ŵT ;L) and P (ol̂,f | ŵL;L) denote the like-

lihood of ot̂,f and ol̂,f and are given by BO; furthermore,

maxof P (of | ŵT ) and maxof P (of | ŵL) denote the max-

imum probability densities of Gaussian functions, and of
denotes the visual features in object models.
3.2.3 Motion Confidence Measure

The confidence measure of motion CM is used to evaluate

the reliability that the outputted trajectory ξ̂ is referred to

by ŵM . It is calculated by dividing the likelihood of ξ̂ by
a baseline that is obtained by the likelihood of the most

typical trajectory ξ̃ for the motion model of ŵM . In this

work, ξ̃ is written as

ξ̃ = argmax
ξ,o

traj
p

P (ξ|otrajp , ol̂,p, ŵM ;L), (6)

where otrajp denotes the initial position of the trajector. ξ̃ is

obtained by treating otrajp as a variable. The likelihood of

ξ̃ is the maximum output probability of HMMs. Different

from ξ̂, the trajector’s initial position of ξ̃ is unconstrained,

and the likelihood of ξ̃ has a greater value than ξ̂. Then,
the motion confidence measure CM is written as

CM (ξ̂, ŵM ;L) = log
P (ξ̂|ot̂,p, ol̂,p, ŵM ;L)

max
ξ,o

traj
p

P (ξ|otrajp , ol̂,p, ŵM ;L)
,

(7)

where P (ξ̂|ot̂,p, ol̂,p,ŵM ;L) denotes the likelihood of ξ̂ and

is given by BM .

3.2.4 Optimization of Weights
We now consider the problem of estimating weight Θ

in Eq. (3). The ith training sample is given as the pair

of input signal (si, Oi, qi) and teaching signal di. Thus,

the training set TN contains N samples is denoted as

TN = {(si, Oi, qi, di)|i = 1, ..., N}, where di is 0 or 1, which
represents OOD speech or RD speech, respectively. The
likelihood function is written as

P (d|Θ) =

N∏
i=1

(CMS(s
i, Oi, qi))d

i

(1− CMS(s
i, Oi, qi))1−di ,

(8)

where d= (d1, ..., dN ). Θ is optimized by the maximum-
likelihood estimation of Eq. (8).

4. Experiments

4.1 Experimental Setting
We first evaluated the performance of MSC. This evalua-

tion was performed by an off-line experiment by simulation
where gaze tracking was not used and speech was extracted
manually without using the GMM based VAD in order to
avoid its detection errors. The weighting set Θ and the
threshold δ were also optimized in this experiment. Then
we performed an on-line experiment with the robot to eval-
uate the entire system.

The robot lexicon L used in both experiments has 50
words, including 31 nouns and adjectives representing 40
objects and 19 verbs representing 10 kinds of motions. L
also includes five Japanese postpositions. Different from
other words in L, none of the postpositions is associated
with a concept. By using the postpositions, users can speak
a command in a more natural way. The parameter set Γ in
Eq. (1) was γ1 = 1.00, γ2 = 0.75, γ3 = 1.03, γ4 = 0.56, and
γ5 = 1.88.

4.2 Off-line Experiment by Simulation
4.2.1 Setting

The off-line experiment was conducted under both clean
and noisy conditions using a set of pairs of speech s and
a scene file, which included O and q. We prepared 160
different speech-scene pairs. The speech was recorded under
both clean and noisy conditions as follows.

Clean condition: We recorded the speech in a sound-
proof room without noise. A subject sat on a chair one
meter from a SANKEN CS-3e directional microphone and
read out a text in Japanese.

Noisy condition: We added dining hall noise, having
a level from 50 to 52 dBA, to each speech record gathered
under a clean condition.

We gathered the speech records from 16 subjects, includ-
ing 8 males and 8 females. As a result, 16 sets of speech-
scene pairs were obtained, each of which included 320 pairs
(160 for clean and 160 for noisy conditions). These pairs
were manually labeled as either RD or OOD and then in-
putted into the system. For each pair, speech understand-
ing was first performed, and then the MSC measure was
calculated. During the speech understanding experiment,
a Gaussian mixture model based noise suppression method
was performed, and ATRASR [Nakamura 06] was used for
phoneme- and word-sequence recognition. With ATRASR,
accuracies of 83% and 67% in phoneme recognition were ob-
tained under the clean and noisy conditions, respectively.

The evaluation under the clean condition was performed
by leave-one-out cross-validation: 15 subjects’ data were
used as a training set to learn the weighting Θ in Eq. (3),
and the remaining 1 subject’s data were used as a test set

and repeated 16 times. The values of the weighting Θ̂
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Figure 4: Average precision-recall curves under clean and
noisy conditions.

learned by using 16 subjects’ data were used for the eval-
uation under the noisy condition, where all noisy speech-
scene pairs collected from 16 subjects were treated as a
test set. For comparison, four cases were evaluated for RD
speech detection by using: (1) the speech confidence mea-
sure only, (2) the speech and object confidence measures,
(3) the speech and motion confidence measures, and (4) the
MSC measure.
4.2.2 Results

The average precision-recall curves over 16 subjects un-
der clean and noisy conditions are shown in Fig. 4. The
performances of each of four cases are shown in the fig-
ure. From the figure, we found that (1) the MSC outper-
forms all others for both clean and noisy conditions and (2)
both object and motion confidence measures helped to im-
prove performance. The average maximum F-measures un-
der clean conditions are MSC: 99%, Speech+Object: 97%,
Speech+Motion: 97%, Speech: 94%; those for noisy condi-
tion are MSC: 95%, Speech+Object: 92%, Speech+Motion:
93%, and Speech: 83%. By comparison with the speech con-
fidence measure only, MSC achieved an absolute increase of
5% and 12% for clean and noisy conditions, respectively,
indicating that MSC was particularly effective under the
noisy condition. We also performed the paired t-test and
found that there were statistical differences between Speech
and all other cases under both conditions.

The values for Θ̂ optimized under the clean condition

were: θ̂0 = 5.9, θ̂1 = 0.00011, θ̂2 = 0.053, and θ̂3 = 0.74.

The threshold δ of domain classification was set to δ̂ =
0.79, which maximized the F-measure of MSC under the

clean condition. The Θ̂ and δ̂ were used in the on-line
experiment.

4.3 On-line Experiment Using the Robot
4.3.1 Setting

In the on-line experiment, the entire system was evalu-
ated by using the robot. In each session of the experiment,
two subjects, an “operator” and a “ministrant,” sat in front
of the robot at a distance of about one meter from the mi-
crophone. The operator ordered the robot to manipulate
objects in Japanese. He was also allowed to chat freely
with the ministrant. The threshold η of gaze tracking was
set to 0.5.

We conducted a total of four sessions of this experiment
using four pairs of subjects, and each session lasted for
about 50 minutes. All subjects were adult males. There was
constant ambient noise of about 48 dBA from the robot’s
power module in all sessions. For comparison, five cases
were evaluated for RD speech detection by using (1) gaze
only, (2) gaze and speech confidence measure, (3) gaze and
speech and object confidence measures, (4) gaze and speech
and motion confidence measures and, (5) gaze and MSC.

4.3.2 Results
During the experiment, a total of 983 pieces of speech

were made, each of which was manually labeled. The num-
bers of them are shown in 1. There were 708 pieces of
speech which were made while the operator was looking at

Table 1: Numbers of speech productions in the on-line ex-
periment.

w/ gaze w/o gaze Total
RD 155 10 165
OOD 553 265 818
Total 708 275 983
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Figure 5: Average recall and precision rates obtained in the
on-line experiment.
the robot, including 115 and 553 pieces of RD and OOD
speech, respectively. This means that in addition to the
RD speech, there was also a lot of OOD speech made while
the subjects were looking at the robot.

The average recall and precision rates for each of the
above five cases are shown in Fig. 5. By using gaze only, an
average recall rate of 94% was obtained, which means that
almost all of the RD speech was made while the operator
was looking at the robot. The recall rate dropped to 90% by
integrating gaze with the speech confidence measure, which
means that some RD speech was rejected erroneously by
the speech confidence measure. However, by integrating
gaze with MSC, the recall rate returned to 94% because
the mistakenly rejected RD speech was correctly detected
by MSC. In (b), the average precision rate by using gaze
only was 22%. However, by using MSC, the instances of
OOD speech were correctly rejected, resulting in a high
precision rate of 96%, which means the proposed method is
particularly effective in situations where users make a lot of
OOD speech while looking at a robot.

5. Conclusion
This paper described a robot-directed (RD) speech detec-

tion method that enables a robot to distinguish the speech
to which it should respond in an object manipulation task
The novel feature of this method is the introduction of the
MSC measure. The MSC measure evaluates the feasibility
of the action which the robot is going to execute according
to the users’ speech under the current physical situation.
The experimental results clearly show that the method is
very effective and provides an essential function for natural
and safe human-robot interaction.
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