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 We propose a method of citation-network analysis for evaluating the topic-dependent importance of individual scientific 

papers. The method is based on the algorithm replicating the mechanism of memory retrieval in the brain. Information 

retrieval by this algorithm conforms to a type of Bayesian inference, which ensures its optimality as probabilistic inference. 

 

1. Introduction 

Citation of a scientific paper in another scientific paper 

denotes that research activity described in the latter is under the 

influence of that in the former (Fig. 1, left). Some papers are 

cited many times, which means that these papers have broad 

impact upon subsequent studies. Accordingly, the easiest way of 

evaluating the importance of a paper in terms of citation is to 

count how many times it is cited. The importance of a paper 

defined in this way is exactly proportional to the number of 

citation. The impact factor, a measure for the influence of a 

journal, is also calculated with the same idea [1].  

Nevertheless, we believe that a citation in a more important 

paper is more valuable than that in a less important paper. Taking 

account of the value of each citation will therefore provide a 

more appropriate definition of the importance of individual 

papers. The most sophisticated method adopting such an idea is 

the PageRank algorithm used by the Google search engine [2, 3]. 

This algorithm assigns higher scores of importance to web pages 

that are linked from more numerous and more important pages.   

The PageRank algorithm defines the importance of individual 

web pages only from the entire link structure of the World Wide 

Web. However we often consider the importance of scientific 

papers as what varies depending on the context or user’s interest 

[2, 4]. Here we propose a novel method of citation analysis to 

evaluate the importance of individual papers in a topic-dependent 

manner. This method is based on the algorithm modelling the 

mechanism of memory retrieval in the brain, which turns out to 

be equivalent to Bayesian inference. 

Fig. 1: Citation network
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2. Methods 

2.1 Citation Network and Spreading Activation 

Consider a large network consisting of papers as nodes and 

citation relations between papers as links (Fig. 1, right). Each 

node has an instantaneous value of ‘activity’. Activities spread 

along links from nodes to nodes, which will be referred to as 

‘spreading activation’ [5]. We define the importance of a paper 

by the value of activity finally acquired by the paper. It should be 

noted that the PageRank algorithm is based on a similar idea of 

spreading activation. (The difference between the PageRank 

algorithm and ours will be described later.) 

2.2 Topic-Dependent Extraction of the Importance 

Let ( )ijA=A  be the adjacency matrix of a citation network: If 

paper j  cites paper i , 1ijA = ; otherwise 0ijA = . Let 
ix  be the 

activity (output) of node i  corresponding to paper i . The input 

to node i  is given by 
1i i

N

j j jI T x
=

=∑ , where 
1ij i

N

kj kjT A A
=

≡ ∑  

corresponds to the transition matrix in the PageRank algorithm.  

We assume a multi-hysteretic input/output (I/O) relationship 

(Fig. 2, see also Appendix) for each node. Hence the time 

evolution of spreading activation is defined by the following set 

of rules: 

(I) If ( ) ( ) 2i ix t I t κ< − , ( ) ( )1 2i ix t I t κ+ = − ; 

(II) if ( ) ( ) ( )2 2i i iI t x t I tκ κ− ≤ ≤ + , ( ) ( )1i ix t x t+ = ; 

(III) if ( ) ( )2i iI t x tκ+ < , ( ) ( )1 2i ix t I t κ+ = + . 

Here, κ  represents the width of hysteresis.  

Because of the hysteretic property of the I/O relationship, the 

iteration of (I)-(III) finally results in a steady state that is 

continuously dependent on the initial state [6]; that is, the 

spreading activation yields continuous attractors. This means that, 

if a given topic is represented by the initial state ( )0x
�

, 

information specific to this topic can be retrieved as a continuous 

attractor ( )limt x t→∞

�

 [7, 8]. Note that, at the limit 0κ → , the 

topic dependence (i.e., continuous dependence of attractors on 

the initial state) disappears and the iteration of (I)-(III) becomes 

identical to the PageRank algorithm.  
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We devised the above algorithm by the analogy of memory 

retrieval in the brain. Noteworthy is that topic-dependent 

retrieval of information by this algorithm is equivalent to 

Bayesian inference. These are elaborated in Appendix.  

Fig. 2: Multi-hysteretic input/output relationship
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2.3 Bibliographic Data 

We prepared bibliographic information of papers published in 

major neuroscience journals. This includes for each paper: 

Identification data (ID) uniquely assigned to the paper; author(s); 

title; journal; volume; pages; year; IDs of cited papers; abstract; 

and so forth. Among them, only IDs of citing and cited papers 

are necessary to construct a citation network (Fig. 1). 

2.4 Seed Documents 

A given topic is fed into the algorithm through ‘seed 

documents’ prepared by a user. Seed documents are a set of 

documents forejudged to be relevant to the topic. Since user’s 

knowledge about the topic is incomplete, seed documents might 

lack some documents relevant to the topic or include irrelevant 

ones. Nonetheless, the proposed algorithm can restore the 

documents truly relevant to the topic through Bayesian inference 

(Appendix).  

Seed documents are encoded by the initial state, as follows: If 

paper i  is a seed document, ( )0 0ix ρ= > ; otherwise ( )0 0ix = . 

2.5 Topic-Dependent Ranking 

Papers that are highly activated in the steady state are regarded 

as what are truly relevant to the topic. Sorting these papers in 

descending order of acquired values of activity gives topic-

dependent paper ranking.   

2.6 Visualization 

Papers highly activated in the steady state tend to be mutually 

connected by citation relations, thus forming a subnetwork of the 

whole citation network. Visualizing this subnetwork gives an 

overview of a ‘genealogy’ in the research field of the topic.  

3. Results 

Below we empirically demonstrate the use and the benefit of 

the proposed method of citation-network analysis. Theoretical 

evaluation of the algorithm is given in Appendix.  

A whole citation network (Fig. 1) was constructed from papers 

published in major neuroscience journals. Then we took for 

example an emerging topic in neuroscience, expressed by the 

phrase “graded persistent activity and neural integrator”. A set of 

10 papers with abstracts showing high scores of word matching 

to this phrase was chosen as seed documents.  

Table 1 shows the top 20 in the ranking obtained by our 

algorithm. Interviewing neuroscientists engaged in this research 

field, we confirmed that the obtained ranking was consistent with 

their expert knowledge. In particular, the paper by Seung et al. 

(2000) is not highly ranked by word matching and is dropped 

from the seed documents, but it is ranked first by our method. 

Indeed, this paper is widely acknowledged as what has marked 

the beginning of the research field.  

Fig. 3 visualizes citation relations among the top 30 in the 

ranking. Each document icon symbolizes a paper and its size 

expresses the activity it has acquired, namely, the topic-

dependent importance assigned to this paper. Icons are sorted in 

chronological order from the top to the bottom. Each arrowed 

line represents the citation relation between two papers. An 

arrow is directed from a citied to a citing paper, which denotes 

that the latter is under the influence of the former (Fig. 1, left). 

When an icon is clicked, bibliographic information of the 

Table 1: Top 20 in the topic-dependent ranking

Rank Title Authors Activity
Seed?

1(Y)/0(N) Journal Vol. pages year

1 STABILITY OF THE MEMORY OF EYE POSITION IN A RECURRENT NETWORK OF CONDUCTANCE-BASED MODEL NEURONSSEUNG HS,LEE DD,REIS BY,TANK DW0.073831 0 NEURON 26 259-271 2000
2 IN VIVO INTRACELLULAR RECORDING AND PERTURBATION OF PERSISTENT ACTIVITY IN A NEURAL INTEGRATORAKSAY E,GAMKRELIDZE G,SEUNG HS,BAKER R,TANK DW0.073822 1 NAT NEUROSCI 4 184-193 2001
3 MODEL FOR A ROBUST NEURAL INTEGRATORKOULAKOV AA,RAGHAVACHARI S,KEPECS A,LISMAN JE0.069003 1 NAT NEUROSCI 5 775-782 2002
4 SYNAPTIC MECHANISMS AND NETWORK DYNAMICS UNDERLYING SPATIAL WORKING MEMORY IN A CORTICAL NETWORK MODELCOMPTE A,BRUNEL N,GOLDMAN-RAKIC PS,WANG XJ0.06481 0 CEREB CORTEX 10 910-923 2000
5 SYNAPTIC REVERBERATION UNDERLYING MNEMONIC PERSISTENT ACTIVITYWANG XJ 0.061916 0 TRENDS NEUROSCI 24 455-463 2001
6 A MODEL OF VISUOSPATIAL WORKING MEMORY IN PREFRONTAL CORTEX: RECURRENT NETWORK AND CELLULAR BISTABILITYCAMPERI M,WANG XJ 0.058597 0 J COMPUT NEUROSCI 5 383-405 1998
7 ROBUST PERSISTENT NEURAL ACTIVITY IN A MODEL INTEGRATOR WITH MULTIPLE HYSTERETIC DENDRITES PER NEURONGOLDMAN MS,LEVINE JH,MAJOR G,TANK DW,SEUNG HS0.057205 1 CEREB CORTEX 13 1185-1195 2003
8 A RECURRENT NETWORK MODEL OF SOMATOSENSORY PARAMETRIC WORKING MEMORY IN THE PREFRONTAL CORTEXMILLER P,BRODY CD,ROMO R,WANG XJ0.056 1 CEREB CORTEX 13 1208-1218 2003
9 BRAIN CALCULUS: NEURAL INTEGRATION AND PERSISTENT ACTIVITYMCCORMICK DA 0.055254 0 NAT NEUROSCI 4 113-114 2001
10 TIMING AND NEURAL ENCODING OF SOMATOSENSORY PARAMETRIC WORKING MEMORY IN MACAQUE PREFRONTAL CORTEXBRODY CD,HERNANDEZ A,ZAINOS A,ROMO R0.055159 0 CEREB CORTEX 13 1196-1207 2003
11 HISTORY DEPENDENCE OF RATE COVARIATION BETWEEN NEURONS DURING PERSISTENT ACTIVITY IN AN OCULOMOTOR INTEGRATORAKSAY E,MAJOR G,GOLDMAN MS,BAKER R,SEUNG HS,TANK DW0.052381 1 CEREB CORTEX 13 1173-1184 2003
12 SYNAPTIC BASIS OF CORTICAL PERSISTENT ACTIVITY: THE IMPORTANCE OF NMDA RECEPTORS TO WORKING MEMORYWANG XJ 0.050142 0 J NEUROSCI 19 9587-9603 1999
13 MATCHING PATTERNS OF ACTIVITY IN PRIMATE PREFRONTAL AREA 8A AND PARIETAL AREA 7IP NEURONS DURING A SPATIAL WORKING MEMORY TASKCHAFEE MV,GOLDMAN-RAKIC PS0.048867 0 J NEUROPHYSIOL 79 2919-2940 1998
14 BASIC MECHANISMS FOR GRADED PERSISTENT ACTIVITY: DISCRETE ATTRACTORS  CONTINUOUS ATTRACTORS  AND DYNAMIC REPRESENTATIONSBRODY CD,ROMO R,KEPECS A0.047541 0 CURR OPIN NEUROBIOL 13 204-211 2003
15 ROBUST SPATIAL WORKING MEMORY THROUGH HOMEOSTATIC SYNAPTIC SCALING IN HETEROGENEOUS CORTICAL NETWORKSRENART A,SONG PC,WANG XJ0.042419 0 NEURON 38 473-485 2003
16 NEURAL BASIS OF A PERCEPTUAL DECISION IN THE PARIETAL CORTEX (AREA LIP) OF THE RHESUS MONKEYSHADLEN MN,NEWSOME WT 0.04152 0 J NEUROPHYSIOL 86 1916-1936 2001
17 CORRELATED DISCHARGE AMONG CELL PAIRS WITHIN THE OCULOMOTOR HORIZONTAL VELOCITY-TO-POSITION INTEGRATORAKSAY E,BAKER R,SEUNG HS,TANK DW0.040958 1 J NEUROSCI 23 10852-10858 2003
18 TEMPORAL STRUCTURE IN NEURONAL ACTIVITY DURING WORKING MEMORY IN MACAQUE PARIETAL CORTEXPESARAN B,PEZARIS JS,SAHANI M,MITRA PP,ANDERSEN RA0.040258 0 NAT NEUROSCI 5 805-811 2002
19 TURNING ON AND OFF WITH EXCITATION: THE ROLE OF SPIKE-TIMING ASYNCHRONY AND SYNCHRONY IN SUSTAINED NEURAL ACTIVITYGUTKIN BS,LAING CR,COLBY CL,CHOW CC,ERMENTROUT GB0.038298 0 J COMPUT NEUROSCI 11 121-134 2001
20 DYNAMICS AND PLASTICITY OF STIMULUS-SELECTIVE PERSISTENT ACTIVITY IN CORTICAL NETWORK MODELSBRUNEL N 0.037095 0 CEREB CORTEX 13 1151-1161 2003
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corresponding paper is displayed in a pop-up window. The 

interviewees again acknowledged that the visualized network 

well represents how this research field has evolved. 

Fig. 3: Visualization of citation relations 

between extracted documents

past

future

Seung, H. S. et al. “Stability of 
the memory of eye position in 
a recurrent network of …”
Neuron 26, pp. 259-271 (2000)

 

4. Discussion 

One problem overwhelming modern scientists is a tremendous 

number of papers being published every year. Even for a 

narrowed topic, what one has to read often exceeds what one can 

read. It is therefore critical to efficiently select papers to read 

from a pile of documents and prioritize them. The topic-

dependent ranking of papers demonstrated here will relieve this 

problem. With this ranking method, one can get a list of papers to 

read in order of priority (Table 1).  

The ranking, however, is just one-dimensional alignment. 

Papers extracted by the proposed method have a higher 

dimensional structure as a network. Visualizing this structure 

(Fig. 3) reveals which papers are central or subsidiary and which 

relations between papers are mainstream or tributary. Such a 

visualized network will serve as a chart for exploring the 

research field. 
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Appendix 

Below we demonstrate the following: The algorithm used for 

our topic-dependent document ranking replicates the mechanism 

of memory retrieval in the brain; information retrieval by this 

algorithm conforms to a type of Bayesian inference.  

Memory retrieval in conventional neural-network information 

processing has been implemented by dynamical systems with 

discrete attractors [9, 10]. However, recent neurophysiological 

findings of graded persistent activity [6] suggest that memory 

retrieval in the real brain is more likely to be described by 

dynamical systems with attractors that continuously depend on 

the initial state [11-13]. Theoretical [14-17] as well as 

experimental [18, 19] studies have demonstrated that neurons 

with a multi-hysteretic response property can generate robust 

continuous attractors. 

Consider a network of N  multi-hysteretic neurons and let ijT  

be the strength of connection from neuron j  to neuron i . A 

multi-hysteretic response property of a single neuron (say, 

neuron i ) can be modelled by stacked bistable compartments; 

each compartment is either in the ‘on’ or ‘off’ state, as illustrated 

in Fig. 2. The following one-step processes describe the state 

transition of the multi-hysteretic neuron: 

( )
( )

( )
( )

( )

( )

( )

( )
( )

0; , 1; , 1; ,

1; , 2; , ; ,
0, , 1, , , ,

G i t G i t G K i t

R i t R i t R K i t
S i t S i t S K i t

−→ → →← ← ←⋯  

Here, ( ), ,S k i t  symbolizes the state of neuron i  where the 

lowest k  compartments are in the ‘on’ states at time t , and 

( ); ,G k i t  and ( ); ,R k i t  are transition rates, given by 

 ( ) ( )( ); , 1 tanh 2 2iG k i t I t k K κβ = + − −   (1a) 

 ( ) ( )( ); , 1 tanh 2 2iR k i t I t k K κβ = − − +   (1b) 

with ( ) ( )
1,

1i ij j

N

j j i
I t T x t

= ≠
= −∑  being the input to the neuron. 

The ( )i tx
�

 is the output from neuron i , defined as the number of 

‘on’ compartments divided by K , the total number of 

compartments. 

Taking K →∞  and β →∞ , we have the conditional 

probability of ( )x t
�

 defining interaction between neurons via the 

connection, 

 ( ) ( )( ) ( ) ( )( )
1

| 1 ~
i

I i

N

tIi
P p tx t x t x

=
− ∏

� �

 (2a) 

with  

( ) ( )( ) ( ) ( ) ( )1 for 2 2;

0 otherwise.i

i i

I t

i

i

I t x t
x t

I t
p

κ κ κ − ≤ ≤ +
= 


 (2b) 

These expressions indicate that ( )x t
�

 is in the N -dimensional 

hypercube with its centre at ( )I t
�

 and the side length of κ ; that 

is, the interaction between neurons makes ( )x t
�

 closer to ( )I t
�

, 

tolerating their difference within the margin of κ . 

We assume that individual neurons are subject to independent 

and identically distributed (i.i.d.) Gaussian noise. Transition from 

( )1x t −
�

 to ( )x t
�

 driven by i.i.d. Gaussian noise alone (namely, 

in the absence of the interaction) is defined by the conditional 

probability: 

 ( ) ( )( ) ( ) ( )( ). . . 1
|| 1 1i i d G i i

N

i
P tx t x p x t x t

=
− = −∏

� �

 (3a) 

where 

 ( ) ( )( ) ( ) ( )( )2| 1 ~ exp 1 2G i i G i ip x t x t x t x tβ − − − −  
. (3b) 

Thus, transition from ( )1x t −
�

 to ( )x t
�

 by Gaussian noise in 

the presence of the interaction between neurons is defined by the 

combined conditional probability: 

 ( ) ( )( ) ( ) ( )( ) ( ) ( )( ). . .~| 1 | 1 | 1I i i dx t x t x t x t xP P P t x t− − −
� � � � � �

. (4) 

Let ( )0x
�

 represent a cue presentation at 0t =  and 

( ) ( ){ }1 , 2 ,x x
� �

⋯  be a temporal sequence generated in response 

to ( )0x
�

. The conditional probability of ( )x T
�

 for ( )0x
�

is hence 

expressed in the path-integral formulation: 
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( ) ( )( )

( ) ( )( ) ( ) ( )( ). . .1

| 0

| 1 | 1~ ,I

T

i i dt

P

x P P

x T x

x t x t x t x tD
=

− −∏∫

� �

� � � ��
 (5a) 

 ( )1

1

T

t
x dx tD

−

=
=∏� �

. (5b) 

This formulation can be evaluated, as follows:  

(i) For a given ( )1x t−
�

, define ( )x t
�

 by 

 ( ) ( )( ) ( )( ) ( )argmax | 1 1, ,
ii G i tI

x

x t p xx x t p i N− == ⋯ .  (6) 

(ii) Repeat (i) for 1, 2,t = ⋯ .          

Note that the obtained sequence ( ) ( ){ }1 , 2 ,x x
� �

⋯  represents ‘the 

most probable path’ in the path-integral formulation (5).  

It can be easily checked that the process (i)-(ii) is equivalent to 

the iteration of (I)-(III) in the main text. Accordingly, the above 

process gives a continuous attractor. Now we assume that ( )x t
�

 

reaches this attractor at t T= . The ( )x T
�

 will therefore represent 

the memory retrieved in response to a cue presentation 

represented by ( )0x
�

. 

Next we show that the path-integral formulation (5) conforms 

to a Bayesian formula. Since ( )x T
�

 is a fixed point, multiplying 

the RHS of (5a) by  

 ( )( ) ( ) ( )( )
1 i

N

T ii I
P p x Tx T

=
≡∏

�

 (7) 

places no further probabilistic constraint on ( )x T
�

; hence 

 

( ) ( )( )

( )( ) ( ) ( )( ) ( ) ( )( )
1 . . .

0

| 1 | 1

|

~ .
T

I i i dt

x T x

x T x t x t

P

P x x tP tP xD
=

− −∏∫
�

� �

� � � � �
(8) 

Conversely, (8) defines the condition for that ( )x T
�

 is a fixed 

point of the process (i)-(ii). 

With the equality ( ) ( )( ) ( ) ( )( ). . . . . .| 1 1 |i i d i i dx t x tP P x t x t=− −
� � � �

, 

the RHS of (5a) is rewritten as 

 ( ) ( )( ) ( ) ( )( ). . .1
| 1 1 |

T

i i dIt
x t x t x t xx P P tD

=
− −∏∫

� � � ��

. (9) 

The factor ( ) ( )( ) ( ) ( )( ). . .| 1 1 |i iI dx t x t x t x tP P− −
� � � �

 corresponds to 

the following procedure: Generate ( )1x t−
�

’s from ( )x t
�

 by i.i.d. 

Gaussian noise according to the probability distribution 

( ) ( )( ). . . 1 |i i d x t tP x−
� �

; among them, select by ( ) ( )( )| 1IP x t x t−
� �

 

those defining the hypercube in which ( )x t
�

 is contained. Thus 

the expression (9) can be regarded as ( ) ( )( )0 |P x x T
� �

, the 

conditional probability of ( )0x
�

 (or in the nomenclature of 

Bayesian inference, the ‘likelihood’ function of ( )x T
�

); this 

describes how ( )x T
�

 is degraded to ( )0x
�

 by Gaussian noise in 

the presence of the interaction between N  elements. Further 

regarding ( ) ( )( )| 0P x T x
� �

 as the posterior probability of ( )x T
�

 

for a given ( )0x
�

 and ( )( )P x T
�

 as the prior probability, we see 

that (5) conforms to the Bayesian formula: 

 ( ) ( )( ) ( )( ) ( ) ( )( )
posterior prior likelihood

| 0 0 |~x T x xP P PT x x T
� � � � �

��������������� ��������� ���������������

. (10) 

The algorithm formulated above enables Bayesian inference in 

the following situation: A number of elements (e.g. documents) 

interact with each other (e.g. via citation relations), and ( )0x
�

 is 

given as observed data (e.g. seed documents signifying a topic), 

which might be generated as a result of the corruption of the 

original data ( )x T
�

 (e.g. correct documents relevant to the topic).  

Statistical-mechanical formulation of Bayesian inference 

conventionally assumes that i.i.d. noise alone contributes to the 

corruption of the original data [20]. This assumption, though it 

might simplify calculation, is inadequate when interaction 

between elements significantly affects the corruption. 

Degradation from the correct documents to seed documents is 

such a typical example; a pair of documents linked by citation 

might appear in or disappear from seed documents not 

independently but in a correlated manner. For appropriate 

inference of the correct documents from seed documents, 

therefore, the proposed algorithm is more suitable than the 

conventional ones. 
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