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We propose a framework to monitor multiple evolving numeric data streams, and determine which pairs are
correlated with lags, as well as the values of lags. Traditional algorithms resolved the lag correlation mining of
whole data streams. While taking into account of the existence of concept drifts in evolving data streams, it is
interesting to discover the correlation among subsequences in the continuous data. In this paper, we detect the
drifting concepts in data and perform lag correlation among subsequences without any concept drifts in order to
generate more accurate results. Our framework can handle data streams of semi-infinite length, incrementally,
efficiently, and with small resource consumption, based on a technique to summarize a dynamic data stream
incrementally at multiple resolutions. According to Nyquist’s sampling theorem, the framework can estimate lag
correlations based on the summarization statistics of data streams with little, and often no error at all.

1. Introduction

In this paper, we focus on lag correlations mining among

multiple evolving data streams. We propose a framework to

determine automatically all the pairs of data streams that

correlated with time-delaies (lags), as well as to report the

values of lags. Lag correlations are frequent in practices:

in a sensor network, the measurements at two nodes have

a lag corrlation of l, that is, the two sequences look very

similar when one is delayed by l time-ticks, due to different

speed for transforming sensor data from nodes to process

center. The knowledge of lag corrrelation can be used for

prediction and is helpful to discover potential anomalies.

Traditional algorithms resolved the problem of lag cor-

relation mining among whole data streams, ignoring the

changes happen in the continuous data. While in most

cases, a change happens in one of the sequences, which trig-

gers a change in the trend of another sequence at the same

time or after a time delay. For example, a decrease in in-

terest rate typically precedes an increase in house sales by

a few months; higher amounts of fluoride in the drinking

water may lead to fewer dental cavities, some yeas later.

Therefore, we detect the change in data automatically and

perform lag correlation among subsequences after changes

happen in order to generate more accurate results. Our

framework also address the critical time and space con-

straints in the data stream environment. Characteristics

of our framework can be summarized as follows:

• Change detection. In our framework, we moni-

tor the correlation coefficent respect to lag l which

maxmizes the correlation coefficient in the previous

data. Intuitively, a change happens if the correlation

coefficient respect to lag l decreases. Compared with

traditional algorithms treating whole data streams or

sliding windows, our framework can perform lag cor-

relation among data streams with different evolving
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speeds and is able to generate more accurate resutls of

correlation analysis.

• Incremental computation. The computation time

of the lag correlation coefficient in terms of a specified

lag l per time tick is constant, which satisfies the time

constraint in data stream environment.

• Estimation of correlation coefficients. In order

to find the maximum correlation coefficient, we need

to calculate the correlation coefficients respceting to

lag l which grows geometrically up to the length of

sequences. In the case of subsequences continuously

increase in length (e.g. stable data streams), It is chal-

lenging. In this paper, we prob the lag correlation co-

efficients at values of the lag l that form a geometric

progression. Thus, we need only O(log n) numers to

estimate the lag correlation coefficient.

• Accuracy. According to the theoretical analysis in

[Sakurai 05], based on Nyquist’s sampling theorem,

the estimation of lag correlations with litte, and of-

ten no error at all.

• Space complexity. Corresponding to the geometric

progression of lag l, we propose a technique to summa-

rize a dynamic data stream incrementally at multiple

resoutions on which the lag correlation analysis are

performed. Here the computational cost of incremen-

tal summarization is O(1) for each new data point,

and the space complexity for calculating the correla-

tion coefficients is dramatically reduced from O(n) to

O(log n).

2. Related Work

There are several related work focus on correlation among

data streams. Zhu et al. [Zhu 02] monitors multiple streams

in real time. They use the ”short window” Fourier Trans-

form to summarize streams, and then computer all the pair-

wise correlations and lag correlations. However, correlation
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is defined within a sliding window, therefore, the choice of

sliding window is nontrivial in order to discover the cor-

relation among the continuous data streams with different

evolving speeds. Additionally, the method will clearly miss

any lag correlation that is longer than the window w of the

short-window Fourier Transform.

Sakurai et al. [Sakurai 05] proposes an incremental and

efficient algorithm for lag correlation mining in data streams

with small resource consumption. In this paper, according

to the theoretical analysis, probing the lag correlation co-

efficients at values of lag l in a geometric progression pro-

duces little and often no error at all. While the correlation

analysis is performed on whole data streams, not considers

the correlation of subsequences triggered by changes in the

trends of data.

In most applications, the data in data streams change

over time, so the correlation among data streams may

change due to the evolutions in data. Sliding window based

analysis is difficult to perform correlation whenever it is

necessary. Yeh et al. [Yeh 07] proposes a framework for

clustering multiple data streams based on events and cor-

relations. The mechanism for event or change detection is

based on approximation of data streams incrementally by

linear segments, and the a change point is consider as the

start point of a segment with different slope. There are

other researches discuss the concept drifts in data stream

mining, such as [Wang 03], [Chen 09] and so on.

3. Change Detection

3.1 Lag Correlation Coefficient
A data stream X is a discrete sequence of numbers

x1, x2, . . . , xn, . . ., where xn is the most recent value. Notice

that n increases with every new time-tick. The definition of

the correlation coefficient R(0) between two time sequences

X and Y of equal length n and zero lag, is a traditional

one, known as Pearson’s ρ coefficient:

ρ = R(0) =

∑
t
((xt − x̄) ∗ (yt − ȳ))

σ(x) ∗ σ(y)
(1)

where x̄, ȳ denote the mean of X and Y , respectively. For

lag l(l > 0), we consider only the common part of X and

the shifted Y ; that is, only n−l time ticks, and the equation

becomes

R(l) =

∑n

t=l+1
(xt − x̄)(yt − ȳ)√

1
n−1

∑n

t=l+1
(xt − x̄)2

√
1

n−1

∑n−l

t=1
(yt − ȳ)2

(2)

x̄ =
1

n − l

n∑
t=l+1

xt, ȳ =
1

n − l

n−l∑
t=1

yt (3)

where R(l) denots the correlation coefficient, when X is

delayed by l.

3.2 Subsequence Lag Correlation Analysis
Given a simple example of concept drift in sequences as

shown in Fig: 1. At time tick t = 5, sequence X has a shift

change. At each time tick, we monitor the lag correlation
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Figure 1: The whole sequences corrlation and subsequences

correlation in an example of a concept drift existing in se-

quences.

coefficient. According to the definition of lag correlation

coefficient, we can get the results that at t = 4, maximum of

R(l) equals 1 at the value of l equals 1, and t = 7, maximum

of R(l) = 1 at the value of l equals 4. The two maximums

of correlation coefficient corresponds to the lag correlated

pairs of subsequences {X1, Y1} and {X2, Y1}. But in fact,

we may interested in the correlation of pattern X2 and Y2

after discovering the lag correlation of pairs {X1, Y1}. Here

we can see for the reason that from time tick t = 5, the shift

pattern change from X1 to X2, the lag correlation between

X and Y changes (until time tick t = 4, Y is correlated

with X with time delay equaling 1). In order to resolve

this problem, we propose a method to detect the change of

pattern automatically. As until t = 4, the lag correlation

coefficient R(l) respecting to l = 1 remains the maximum

value, while at t = 5, the R(l = 1) decreases. That is

to say, at t = 5, the lag correlation between X and Y is

destroyed, therefore, it is a trigger for a new analysis of lag

correlation. Then we calculate R(l) from t = 5 of sequence

X and t = 4 of sequence Y , and reset l = 1. Finally, we can

discover the lag correlation between subsequence X2 and

Y2. In conclusion, we monitor the correlation coefficient

respect to lag l which maximizes the correlation coefficient

in the previous data, and detect a change of pattern if the

correlation coefficient respect to lag l decreases.

4. Incremental Computation of Corre-
lation Coefficients

As discussed in [Sakurai 05] and [Yeh 07], the correla-

tion coefficients can be computed incrementally. Next we

disscuss the incremental calculation process. Let Sx(1, n)

be the sum of sequence X of length n (i.e. Sx(1, n) =∑n

t=1
xt), and Sxx(1, n) be the sum of the squares of X

(i.e. Sxx(1, n) =
∑n

t=1
x2

t ). Sxy(l) means the inner-product

for X and the shifted sequence Y :

Sxy(l) =

n∑
t=l+1

xtyt−l (4)
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We shall refer to all these values collectively as sufficient

statistics. Given our sufficient statistics, the correlation co-

efficient R(l) is obtained by

R(l) =
C(l)√

Vx(l + 1, n) ∗ Vy(1, n − l)
(5)

where C(l) is the covariance of X and Y :

C(l) = Sxy(l) − Sx(l + 1, n) ∗ Sy(1, n − l)

n − l
(6)

and Vx(l + 1, n) means the variance of subsequence of X,

starting from t = l + 1:

Vx(l + 1, n) = Sxx(l + 1, n) − (Sx(l + 1, n)2)

n − l
(7)

The variance Vy(1, n − l) of Y is computed similarly. In

conclusion, for the given value of lag l, we only need to

keep track of five numbers, the sufficient statistics, because

they are enough to help us estimate the correlation R(l), at

any point of time.

5. Estimation of Correlation Coeffi-
cients

Although the calculation of correlation coefficient at each

time tick is incremental, we also aim to prob the lag l

in order to maximize the lag correlation coefficient R(l).

Therefore, in order to find the maximum correlation co-

efficient, we need to calculate the correlation coefficients

respecting to lag l which grows geometrically up to the

length of sequences. We compare the subsequences between

two change points, but in the case of subsequences contin-

uously increase in length (e.g. subsequences of stable data

streams), reporting the lag l with maximum R(l) is a chal-

lenging problem. Here, refer to the method in [Sakurai 05],

specially, instead of computing R(l) for every possible value

of lag l, we propose to keep track of only a geometric pro-

gression of the lag value: l = 0, 1, 2, 4, 8, . . .. The justifica-

tion is that it achieves a dramatic reduction in computation

time, since we need only O(log n) numbers to keep track

of, instead of O(n) that the ”naive Solution” requires. As

discussed in theoretical analysis of [Sakurai 05], based on

Nyquist’s sampling theorem, the estimation of lag correla-

tions with little, and often no error at all.

6. Space Complexity for Estimation of
Correlation Coefficient

Corresponding to the geometric progression of lag l, we

propose a technique to summarize a dynamic data stream

incrementally at multiple resolutions on which the lag corre-

lation analysis is performed. Here the computational cost of

the incremental summarization is O(1) for each new data

point, and the space complexity is dramatically reduced

from O(n) to O(log n).

We use a average scheme to compute multi-resolution ap-

proximations of a single data stream. These approximations
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Figure 2: Multi-resolution summaries of a data stream.

are shown pictorially in Fig. 6. for the case n = 16. A

level 3 approximation denoted as A3 stores a set of val-

ues that summarize [0, . . . , 15]. A level 2 approximate de-

noted as A2 stores two sets of values: one summarizing

[0, . . . , 7] and the other summarizing [8, . . . , 15]. There are

3 nodes at each level to keep the corresponding approxima-

tions, Left Node (L), Shift Node (S) and Right Node (R)

from left to right. The approximation stored at the Right

Node will be shifted to the Left Node after some time units

to represent an old approximation. Shift Node acts as an

intermediary in this process. When a new data point ar-

rives, we update the multi-resolution summaries and choose

the Right Nodes to estimate the lag correlation coefficients

R(l), l = 0, 1, 2, . . . , log n. Fig. 3 illustrates an example for

update of the multi-resolution approximations at each new

data point. At t = 0, every node is up-to-date as shown

in Fig. 3(a). At t = 1, a new data value, 4, arrives. At

t = 1, L0 gets the summary stored in S0, 14/2, and S0 gets

26/2 from R0. R0 computes the average of 14 and 4. The

average 18/2 is stored in R0. All nodes at higher levels are

shifted up by 1 time unit. For example, L2 now stores an

approximation to [9−16] instead of [8−15]. Fig. 3(b) shows

the resulting tree. At t = 2, 6 arrives. At level 0, L0 gets

26/2 from S0, and S0 gets 18/2 from R0. The new average

of [0−1], 10/2, is stored in R0. At level 1, L1 gets 8/4 from

S1, and S1 gets 32/4 from R1. Lastly, R1 computes and

stores the average of R0 and L0, which is 36/4. Fig.3(c)

shows the resulting tree. Fig. 3(d), Fig. 3(e) and Fig. 3(f)

show the resulting tree after the arrival of 2, 10 and 4. As

illustrated, the computation cost for approximating each

new arrival data point is O(1). Thus, we use a cubic spline

to interpolate the missing correlation coefficients between

the approximated coefficients. It effectively estimates that

the correlation coefficients vary between these lags. Finally,

we can see the lag correlation from the local maximum of

the cubic spline curve (solid line in Fig. 7.).

7. Conclusions

In this paper, we extend traditional algorithms for lag

correlation mining to treat evolving data streams. It is able

to discover the lag correlations among subsequences and re-

port the values of lags automatically. Our framework can

handle data streams of semi-infinite length, incrementally,

efficiently, and with small resource consumption, based on
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a technique to summarize a dynamic data stream incre-

mentally at multiple resolutions. As reference to Nyquist’s

sampling theorem, the framework can estimate lag correla-

tions based on the summarization statistics of data streams

with little, and often no error at all. As the future work,

we will apply the proposed framework to synthetic and real

data in order to evaluate its effectiveness and efficiency.
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Figure 4: Estimation of correlation coefficients.
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