
The 23rd Annual Conference of the Japanese Society for Artificial Intelligence, 2009

Direct Mining of Closed Tree Patterns With Subtree Constraint

Viet Anh NGUYEN Koichiro DOI Akihiro YAMAMOTO

Graduate School of Informatics, Kyoto University

Two critical bottle necks in mining frequent tree patterns from tree databases are the exponential number of
mined patterns and the lack of user focus on the mining process. We propose, in this paper, an algorithm that
solves the problems for unordered attribute trees by mining only the compact representation of tree patterns, i.e.
closed tree patterns, and allows users to mine only trees of their interest by specifying subtree constraints. The
experimental results show the efficiency of our algorithm.

1. Introduction

Although there have been many algorithms on efficient

tree pattern mining, e.g. [Zaki 02, Asai 02, Chi 04], in

many cases, the overwhelming number of patterns gener-

ated may confuse users. We consider the problem of min-

ing unordered closed tree patterns with subtree constraint.

Subtree constraint is a tree itself which is specified by the

user and must be included in all patterns generated. In

practice, users may not be interested in all frequent sub-

trees but only some that are super trees of a given pattern

tree. Subtree constraint would also be useful, for example,

in Web-mining, where the user want to extract common

patterns around some given information from Web pages.

The proposed method is efficient firstly because it mines

only concise representation of tree patterns, and secondly

because it adopts a top-down method which helps to min-

imize the number of scan over the dataset and to avoid

many redundant generating and checking of intermediate

candidate subtrees as of the case of bottom-up method.

2. Preliminaries

A labeled tree is an acyclic connected graph whose every

vertex (or node) is assigned a label. A rooted tree is a tree

that has a special node called the root. A node v on the

path from the root to a node w is called an ancestor of

node w, in which case w is called a descendant of v. Each

of the closest descendants of v is called a child of v, in which

case v is called the parent of the child. A tree S is called

a subtree of a tree T (S ¹ T ) if there exists a one-to-one

mapping ϕ from nodes in S to T , such that ϕ preserves the

parent-child relation as well as the node labels. If S ¹ T

holds, we also say S occurs in T , T is a super tree of S, or

T contains S.

Let D = {T0, ..., Tn} be a database where each of its

transactions is a rooted, labeled tree. We call any tree T

that occurs in D a pattern. The support of a tree T in

D is defined as the number of trees in D that contains T .

A tree T is called frequent if its support is greater than

or equal to a threshold (minsup) specified by a user. A
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Figure 1: The running example

frequent subtree T is closed if no proper super tree of T has

the same support that T has. Let S be a pattern specified

by the user, the task is to enumerate all closed subtrees

containing S.

Existing algorithms could be efficient for mining all fre-

quent tree patterns, but none of them are suitable for the

problem of mining with subtree constraint. The only way to

obtain the patterns satisfying the constraint is to generate

all patterns and then filter out those which are not super

tree of the subtree constraint. This approach is not effi-

cient, especially when the databases to be mined are huge

and changed continually. Our goal is to develop a compu-

tationally efficient method toward this problem.

The database given in Figure 1 is used as our running

example. The database consists of three transactions, the

minsup is set to 2, and the pattern S contains two nodes

B and F . Each transaction has a unique id, i.e., T0, T1,

and T2, respectively. Each node in a transaction is assigned

a unique number which is the node’s index in the preorder

traversal of the tree.

3. Mining under subtree constraint

The proposed method comprises of two phases. The first

phase is to find all roots of closed subtrees containing the

subtree constraint S. In the second phase, for each root

node found in the first phase, we construct a data structure

called an RG-tree which is the representation of subtrees

rooted at the root node. We then propose an efficient algo-

rithm to generate all closed trees directly from the RG-tree.

3.1 Searching for the roots
Root nodes of closed subtrees containing S can be found

from a set composed of paths from the occurences of S to

the roots of transactions where S occurs. This set is called
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Figure 2: Building an RP-tree

a rootpath set and is compressed into a compact data struc-

ture called an RP-tree. Roots of downward closed subtrees

(defined later) are generated directly from the RP-tree.

Each node v of an RP-tree is assigned a set of occurrences

of the node v in D denoted by OccList(v). The label of the

root r of the RP-tree is the label of the root of S, and the

OccList(r) is the set of all occurences of S in D.

Figure 2 illustrates an example of building the RP-tree

for the running example. Figure 2(a) shows the four paths

of the rootpath set. After all the paths in the rootpath set

are compressed, we obtain the RP-tree in Figure 2(b). In-

frequent nodes will be pruned out from the RP-tree because

they cannot be roots of any frequent subtree. Figure 2(c)

shows the final RP-tree.

Let v be a node of an RP-tree. A frequent subtree T

rooted at v is called downward closed if no super tree of

T with the same root v has the same support that T has.

Note that a downward closed subtree is not necessarily a

closed subtree. A downward closed subtree T with the root

v is closed in D if and only if there does not exist a super

tree T ′ formed by adding a parent node to the root node v

of T such that T ′ has the same support as T .

Lemma 1 Let v be a node in an RP-tree. A downward

closed subtree rooted at v contains the pattern S as its sub-

tree.

Let v and w be nodes of an RP-tree. The node v is called

transaction-matched with the node w if for each transaction

Ti ∈ D where v occurs (with occurrences in OccList(v))

there exists at least one occurrence in OccList(w).

Lemma 2 Let v be a node of an RP-tree. If v is not

transaction-matched with any of its child nodes, then there

exists at least one downward closed subtree rooted at v which

is also a closed subtree in D, otherwise, no downward closed

subtree rooted at v be a closed subtree in D.

Input: a database D of trees, a minimum support

minsup, a pattern S;

Output: roots of all downward closed subtrees

containing S;

Occ ← all occurrences of S in D;1

rpSet ← all root paths started from all occ ∈ Occ;2

rpTree ← Build RP Tree(rpSet,minsup);3

out ← Get Roots(rpTree);4

Algorithm 1: Generating all the roots
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Figure 3: An RG-tree

Algorithm 1 outputs the roots of all downward closed

subtrees containing a pattern S. The Build RP Tree pro-

cedure builds the RP-tree as we have discussed above.

The Get Roots function scans the RP-tree in the breadth-

first manner starting from the root. If a node v be-

ing visited has no child nodes or v is not transaction-

matched with any of its child nodes then v is added to the

out set. For example, the root node A {(T0, 0), (T2, 0)}
and the root node C {(T0, 1), (T1, 0), (T2, 1), (T2, 6)} are

generated from the RP-Tree in Figure 2. The node B

{(T0, 4), (T1, 4), (T2, 3), (T2, 9)} is transaction-matched with

its child node (the node C {(T0, 1), (T1, 0), (T2, 1), (T2, 6)})
and thus is not generated as a root node.

Lemma 3 Let v be a root node generated by Algorithm 1.

Then a downward closed subtree T rooted at v is not closed

in D if there is a child node v′ of v in the RP-tree such that

OccD(T ) is transaction-matched with OccList(v′), where

OccD(T ) is the occurrence set of T in D.

A checking function based on Lemma 3 is proposed in Sub-

section 3.3.

3.2 Constructing the global trees
This subsection describes the construction of the so-called

RG-tree which is the representation of all subtrees having

the same root node. We only consider the database of at-

tribute trees ∗1. A node v of an RG-tree is also assigned a

set of all occurrences of v in D denoted by OccList(v).

The RG-tree for a root node r with occurrence set

OccList(r) is constructed from the top to the bottom. First,

the node r is made as the root of the RG-tree. For a node v

already been constructed, we scan for child nodes of v at all

occurrences of v in D. Nodes with same label are grouped

and made as a child node of v in the RG-tree. Suppose w is

a child node of v in the RG-tree, for an occurrence occ of w

in some tree T , we add the corresponding occurrence o of

the root node r to the OccList of w if there exists a path

from o to occ in T .

The RG-tree for the root node C {(T0, 1), (T1, 0), (T2, 1),

(T2, 6)} is shown in Figure 3. For the brevity, four occur-

rences are rewritten as O0, O1, O0
2, and O1

2, respectively.

3.3 Mining from the global trees
The proposed method works in a level-wise manner start-

ing from the root of the RG-tree. First, downward closed

subtrees are generated and those which are not closed in

∗1 A tree is an attribute tree if any two sibling nodes do not
have the same label.

2



The 23rd Annual Conference of the Japanese Society for Artificial Intelligence, 2009

Table 1: A Transposed database

Occurrence Tid Items

O0 0 v1 v2 v4 v6

O1 1 v1 v2 v4 v6

O0
2 2 v1 v2 v4

O1
2 3 v2 v4

Input: a RG-tree G with root r, a minimum

support minsup

Output: all frequent closed subtrees of the RG-tree

T ← r;1

C ← all children of r in the tree G;2

out ← ∅;3

MineClosed(G, minsup, T, C, out);4

return out;5

Algorithm 2: Mining from RG-tree

D will be pruned out. Given an RG-tree G, each node of

G is numbered according to the index of the node in the

preorder traversal of G. A subtree of G sharing the same

root with G is called a root subtree of G. Given T , a root

subtree of G, we define Li(T ) as the set of all nodes at the

depth i of T , Pi(T ) the set of all nodes in G that are parent

nodes of nodes in Li(T ), and Ci(T ) the set of all child nodes

in G of nodes in Pi(T ).

For a set C of some nodes at the level i of a root subtree

T of an RG-tree G, we define the transposed database of C

(denoted by Ctrans) as the following. Transactions of Ctrans

are the occurrences of nodes in C, and items in Ctrans are

the nodes in C.

The transposed database of the set of all nodes at level 1

of the RG-tree in Figure 3 is given in Table 1.

Lemma 4 For a root subtree T of an RG-tree, let CFIi(T )

be the set of all closed frequent itemsets in the transposed

database of Ci(T ). If T is downward closed, then for every

level i of T , Li(T ) ∈ CFIi(T ).

Lemma 4 suggests a method to mine all downward

closed subtrees from a RG-tree based on the mining of

closed frequent itemsets from the corresponding transposed

databases. A root subtree is grown level by level with the

starting level (level 0) containing only one node that is the

root of the RG-tree. To obtain nodes at level i +1, a trans-

posed database for child nodes of nodes at level i is created.

Each closed frequent itemset becomes a candidate of set of

nodes at level i + 1 of the tree being grown. The method is

given in Algorithm 2.

The operator ⊕ on Line 15 in the MineClosed procedure

grows the subtree T one more level by adding all child nodes

of CIS[i] to T using the parent-child relationships of the

RG-tree G. Line 13 of the MineClosed procedure ensures

the subtree T is always generated after T ′ if T ¹ T ′, and

thus, we can apply the CheckClosed function to prune out

T if it is not a downward closed subtree. The CheckClosed

Ctrans ← Make Transposed DB (C);1

CIS ← all closed freq. itemsets mined from Ctrans;2

if CIS = ∅ then3

if CheckClosed (G, T, out) = true then4

out ← out ∪ T ;5

end6

else7

if sup(T ) > maxI∈CIS sup(I) then8

if CheckClosed (G, T, out) = true then9

out ← out ∪ T10

end11

end12

sort itemsets in CIS in size descending order;13

for i = 0 to |CIS| − 1 do14

T ′ ← T ⊕ CIS[i];15

C′ ← all child nodes in G of nodes in CIS[i];16

PruneOcc (C′);17

MineClosed (G, minsup, T ′, C′, out);18

end19

end20

Procedure MineClosed(G, minsup, T, C, out)

if ∃t ∈ out s.t. t having the same support as T then1

return false;2

end3

r ← root(G);4

if ∃v s.t. v is a child node of r in the RP-tree and5

Occ(T ) is transaction-matched with OccList(v)

then

return false;6

end7

return true;8

Function CheckClosed(G, T, out)

function also helps to prune out downward closed subtrees

that are not closed in D by using a checking technique devel-

oped based on Lemma 3. The PruneOcc procedure deletes,

from the OccList of nodes at level i + 1, occurrences which

do not appear in the occurrence set of nodes at level i so

that all trees generated are frequent.

Figure 4 is an example of generating all closed subtrees

from the RG-tree in Figure 3. Each subtree is assigned an

index indicating the order in which the subtree is created.

Subtrees inside the rectangles are closed and frequent.

4. Experiments

We conducted the experiments on three different real life

datasets CSLOGS ∗2, TREEBANK ∗3 , and DBLP ∗3. To

obtain the attribute trees, we pruned the datasets by re-

moving all but the first occurrences of the repeated labels.

All experiments are measured on a 2.4GHz Intel Core 2 Duo

CPU with 2 GB of RAM.

∗2 http://www.cs.rpi.edu/~zaki/software/
∗3 http://www.cs.washington.edu/research/xmldatasets/
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Figure 4: Mining from the RG-tree in Figure 3

Table 2: CMTreeMiner (CMT) versus SCCMiner (SCC)

Dataset Runtime (sec) # closed subtrees

Minsup CMT SCC CMT SCC

CSLOGS 100 125 0.828 7,348 110

90 208 0.844 10,446 110

80 384 0.86 14,131 222

70 754 0.875 19,882 334

60 1,516 0.891 30,301 565

TREEBANK 900 308 1.265 7,879 73

700 363 1.531 11,666 115

500 451 1.922 19,497 197

300 610 3.01 41,171 468

100 1,281 8.688 186,665 2,988

DBLP 500 796 1.156 279 4

400 800 1.156 286 4

300 803 1.172 299 4

200 808 1.172 333 4

100 875 1.172 342 4

We first compared our algorithm called SCCMiner with

CMTreeMiner [Chi 04], a very efficient closed tree patterns

mining algorithm. For CMTreeMiner, we assume zero cost

in the post-processing stage to obtain the closed subtrees

satisfying the subtree constraint. The subtree constraint

S is selected as the one that appears in 1% of all closed

subtrees.

From Table 2, we can see that SCCMiner is very compet-

itive in running time in all the settings. The SCCMiner is

also efficient in the memory usage which is less then 10% of

the memory used by CMTreeMiner in most cases and very

stable as the minimum support goes down. Please note that

we did not say CMTreeMiner is inefficient. CMTreeMiner is

efficient to mine all closed tree patterns, whereas SCCMiner

turns out to be more efficient when mining under subtree

constraint.

Figure 5 shows the scalability of SCCMiner with respect

to the constraint selectivity. For each dataset, we fixed

the minimum support threshold value and varied the sub-

tree constraint S of different selectivity of 1%, 2%, 4%,

8%, and 16%. As can be seen from the figure, SCCMiner

achieves a linear scalability with the constraint selectivity

for all datasets.
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Figure 5: Scalability with constraint selectivity

One of the most interesting aspects of the SCCMiner al-

gorithm is it can find vary rare patterns (patterns of very

low support value e.g., 0.003%, which corresponds to a

subtree occurring in only 2 transactions in the CSLOGS

dataset) within a second.

5. Conclusion

In this paper we have proposed an algorithm for min-

ing unordered closed tree patterns with subtree constraint

which allows the user to give a partial specification of pat-

terns of interest from an attribute tree database. The sub-

tree constraint leads to less but more interesting mining

results to the user. Our experimental results show the ef-

fectiveness of the algorithm developed. The proposed al-

gorithm can be easily extended to mine with multiple sub-

tree constraints and other monotone constraints. Further

research can be defining similar constraints and develop-

ing similar algorithms for general tree databases and graph

databases as well.
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