
The 22nd Annual Conference of the Japanese Society for Artificial Intelligence, 2008

2G2-2

Semantic Relation Extraction Using Penalty Tree Similarity

Jie Yang∗1 Yutaka Matsuo∗2 Mitsuru Ishizuka∗1

∗1Graduate School of Information Science and Technology, TheUniversity of Tokyo
∗2School of Engineering, The University of Tokyo

In the past decades, kernel methods are enthusiastically explored for relation extraction. This paper proposes
a penalty tree similarity algorithm by extending the dependency tree kernel. Dependency tree kernel computes
the similarity of two parse trees by enumerating their matched sub-trees. The penalty tree similarity, however,
not only consider the similar structures of the parse trees, but also count in their influences by exploring relative
position information between the sub-trees to the target (the entity pairs that generate the tree). An experiment
is conducted and the comparison between the dependency tree kernel and the penalty tree similarity is also done.
The results show that the former achieves a better performance.

1. Introduction

Information Extraction (IE) is an important task for natural lan-
guage processing (NLP). It is further divided several subtasks: en-
tity recognition, relation recognition, event recognition and so on
([?]). This paper focuses on the relation recognition task that ex-
tracts named relationship between entities in text. Take the sen-
tence “Officials in California are warning residents.” as an exam-
ple,Officials is an instance of the entity typegovernment; Califor-
nia is an instance of the entity typelocation; the two entities are
connected by the relationlocated-in.

Many studies have been done over the past decades, which can
be divided into three classes: the supervised approach, the un-
supervised approach and the semi-supervised approach. The su-
pervised approach [MFRW00, ZAR03] achieves the best perfor-
mance, but is known to suffer from poor adaptivity. It is no-
ticed that it is time consuming to construct an adequate size of
training data for a new application or domain. The unsupervised
approach [HSG] does not need the annotated corpus. However,
they usually fail to give the relation name connecting two entity
mentions; the performance is also low. Semi-supervised approach
[YGTH00, BM07] draws much attention recently, yet the effec-
tiveness of the method depends on the initial seeds and it still lacks
systematic methods for seed selection. Because the extraction per-
formance is our first concern, this work focuses on the supervised
approach.

Kernel methods [CST00] show their effectiveness on the rela-
tion extraction task and have gained popularity in recent years.
Typically, the supervised approach models the relation extraction
task into a classification problem on tree structures of sentences.
Kernels are used in the diagram to measure the tree similarity.
[Hau99] introduces the convolution kernel over discrete structures
like strings and trees. [ZAR03] proposes a kernel between two
parse trees, which recursively matches nodes from roots to leaves

Contact: Jie Yang
Graduate School of Information Science and Technology, The
University of Tokyo
Room 111C1, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656,
JAPAN
TEL: 03-5841-6774, FAX: 03-5841-8570
Email: yangj@mi.ci.i.u-toko.ac.jp

in a top-down manner. [CS04] extends the parse tree kernel and
makes two kernels over the dependency trees. Various extensions
over the dependency tree kernel are proposed since then. Com-
posite kernels[ZG] explore different levels of syntactic process-
ing and achieve better performance than single kernel. [BM] ob-
served that the shortest path between entity mentions usually cap-
tures the relation between entities and proposed a shortest path
kernel. A context-sensitive convolution tree kernel is proposed by
[ZZJZ07] that enumerates both context-free and context-sensitive
information. Kernel based similarity methods for relation extrac-
tion are also utilized by [ZSW+05]. These studies treat tree nodes
equally, we will show in this paper that improved performance can
be achieved by treating nodes differently according to their posi-
tions.

2. Penalty Tree Similarity

In this section we first introduce the dependency tree kernel
briefly; then present our penalty tree similarity algorithm which
adjust the kernel result by weighting tree nodes differently.

2.1 Dependency Tree Kernel
Formally, a kernel functionK is a mappingK : X × X −→

[0,∞] from instance spaceX to a similarity score. It is a symmet-
ric, positive semi-definite function and can be expressed as a dot
product in a high-dimensional space:K(x, y) = Σiφi(x)φi(y) =

φ(x) ·φ(y). Hereφi(x) is some feature function over the instance
x.

We describe the tree kernel following the notations of [CS04].
A parse treeT is a set of nodet0, t1, ...tn. A nodeti includes a set
of features given byφ(ti) = v1, ..., vd. We denote byti[j] thejth
child of nodeti, and byti[c] the set of all children of nodeti. We
reference a subsetj of children ofti by ti[j] ⊆ ti[c]. The parent
of nodeti is referred to asti.p. Then the tree similarity function
K(T1, T2) over two treesT1 andT2 with the root nodesr1 andr2

(r1, r2 ∈ T) is defined recursively as follows:

K(T1, T2) =















0, if m(r1, r2) = 0

s(r1 + r2)+

Kc(r1[c], r2[c]), otherwise

(1)

wherem(ti, tj) ∈ {0, 1} is a matching function ands(ti, tj) ∈

1

The 22nd Annual Conference of the Japanese Society for Artificial Intelligence, 2008

[0,∞) is a similarity function. Denote two possibly overlapping
subsets ofφ(ti) asφm(ti) ⊆ φ(ti) andφs(ti) ⊆ φ(ti), we define:

m(ti, tj) =

{

1, if φm(ti) = φm(tj)

0, otherwise

and
s(ti, tj) =

∑

vq∈φs(ti)

∑

vr∈φs(tj)

C(vq, vr)

whereC(vq, vr) equals to one if the feature of the two words
equals, otherwise zero.

The functionKc is a kernel function over children. In our
work we use contiguous kernel rather than sparse kernel to
save processing time. Denote

∑

s=1,...l(i) K(P1[is], P2[js]) by

K(P1(i), P2[j]) then,

Kc(r1[c], r2[c]) =
∑

a,b,l(a)=l(b)

λ
l(a)

K(ti[a], tj [b])

2.2 Penalty Tree Similarity Algorithm
Tree kernel presented above measures the structure similarity of

two dependency trees by enumerating and comparing all the possi-
ble sub-structures of the two trees. However there are cases where
considering the tree structure only is not enough. Figure 1 shows
an example. Figure 1(a) and Figure 1(c) are subtrees of the sen-
tence “Nirvana was an American rock band that was formed by
Kurt Cobain and Krist Novoselic in Aberdeen, Wahsington”. Fig-
ure 1(a) is the minimal treeT1 of nodesNirvanaandCobainand
Figure 1(c) the minimal treeT ′

1 of Nirvana andAmerican. Fig-
ure 1(b) and 1(d) show the same minimal treeT2 of nodesSuicide
andAmericanof the sentence “Suicide is an American rock mu-
sic group since 1971”. When computing their similarities with
the tree kernel,K(T1, T2) andK(T ′

1, T2) return the same result.
It is because the matched structures of the two pairs of trees are
same, as shown by the colored nodes in Figure 1. However, in fact
T ′

1 andT2 should be assigned a greater similarity value thanT1

andT2. This problem occurs because the tree kernel assumes that
tree nodes contribute equally to the similarity measurement, but
we suggest that their contributions should be calculated differently
according to the node pair that generates the minimal tree. In es-
sential, its the similarity between node pairs, not that between tree
structures that we are seeking for. For example, inT ′

1 the matched
nodes mostly convey the information about the band, such as its
genre (rock) or the origination place (American), but are less about
its membership information (Cobain).

With above observation, we propose an algorithm that calculates
the contribution of different nodes differently.

We first find out the shortest path that connects the target node
pair, which can be thought as the trunk of the minimal tree. For
example, in treeT1 of Figure 1(a), the trunk connecting nodes
Nirvana and Cobain is “Nirvana was band formed by Cobain”.
Other nodes belong to the branch of the tree which, according to
the feature of dependency tree, grammatically modify the trunk.
For example, the wordsan American rockmodifies the wordband
and that wasmodifiesformed. Our hypothesis is that the farther
a node is to the trunk, the less important it is to the node pair,
the nearer the more important. We consider the nodes that did’t
get matched after the tree-kernel function and calculate the penalty
they bring to the tree-kernel similarity. The more unmatched nodes

(a) T1 (b) T2

T1 is the sub minimal tree generated by “Nirvana” and
“Cobain”; T2 is the minimal tree generated by “Suicide” and
“American”.

(c) T
′

1
(d) T2

T ′
1 is the minimal tree generated by “Nirvana” and “’American”;T2

is the minimal tree generated by “Suicide” and “American”.

Figure 1:K(T1, T2) andK(T ′
1, T2) return the same value because

their matched nodes (matched nodes are filed with colors) are the
same.

are in a tree, the nearer those nodes are to the trunk, the more
penalty is given.

Above statements are formulated as below. Given two nodesti

andtj in a dependency treeT , the trunk is defined as the shortest
pathp(ti, tj) (written asp for short when necessary) connecting
them.

p(ti, tj) = ti, ti1 , ti2 ...tin , tp, tjm , ...tj2 , tj1 , tj

whereti.p = ti1 , ti1 .p = ti2 , ..., tin .p = tp ... andtj .p = tj1 ,
tj1 .p = tj2 , ..., tjm .p = tp. For any nodet ∈ T , its distance to
the trunkp(ti, tj) is defined to be:

d(t, p) = mintk∈p{|p(t, tk)|}

For example, in Figure 1(a),p(Nirvana, Cobain) is “Nirvana
was band formed by Cobain” and the distance from the nodeAmer-
ican to the trunk is three.

Denote the set of unmatched nodes asu, the penalty function is:

P (u) =
1

(1 +
∑

x∈u
1√
x
)
2 ∈ (0, 1] (2)

and the penalty similarity algorithm of two dependency trees is
defined as:

S(T1, T2) = P (u1) ∗ P (u2) ∗ K(T1, T2) (3)

whereP (u1) andP (u2) calculate the penalty function ofT1 and
T2 respectively.

2

The 22nd Annual Conference of the Japanese Society for Artificial Intelligence, 2008

3. Relation Extraction with Penalty Tree
Similarity

The relation extraction approach proposed in this paper consists
of 1) pre-processing, 2) word pair detection and 3) relation labeling
and raking using KNN.

3.1 Pre-processing and Word Pair Detection
First a sentence is parsed into a dependency tree using the Con-

nexor∗1 parser. Then the entity tagger Annie [CMBT02] is used to
detect entity information. After pre-processing, a dependency tree
is constructed for the input sentence. Nodes of the tree correspond
to words of the sentence and edges correspond to dependency re-
lations. Each node is described by eight features as shown in Table
1.

Feature Example
f1 lemma word move (stem of moving)
f2 dependency function (37 values) subj, agt
f3 syntactic function (28 values) ADVL, APP
f4 surface syntactic tag (12 values) N, A, VP

f5, f6, f7 morphological tag ABBR, NUM, PRON
f8 Annie tag (eight values) PERSON, DATE

Table 1: Features of each node in the dependency tree.

Then we can evaluate the similarity between two words using
the eight features. Knowledge encoded in WordNet is also used.
The similarity between wordw1 and wordw2 is calculated as be-
low:

Simw(w1, w2) =

∑

i=1...8 ϕ(f1,i, f2,i) + Simwn(w1, w2)

9

whereϕ(f1,i, f2,i) equals tooneif the ith feature of the two words
equals, otherwisezero. FunctionSimwn is the WordNet based
word similarity method developed by [SVH04]. Based on the
function Simwn, for a input sentence, we can detect we detect
word pairs that are more likely to be embodied in a relation in-
stance. The aim of word pair detection is to reduce noise and to
save processing time by eliminating useless word pairs.

The word pair detection step is described as follows. Given an
input sentencest and a sentence corpusC; each sentences ∈ C is
connected with a set of relation instancesRs. Our task is to detect
the valuable word pairs ofst. Suppose wordsw1 andw2 belong to
st. Each relationrs,i ∈ Rs takes the form of(w′

1, rel
′, w′

2). The
word pair is estimated by functionEst(w1, w2):

∑

s∈R

∑

rs,i∈Rs

∑

w∈{w1,w′

1
},w′∈{w2,w′

2
} Simw(w, w′)

sums∈C |Rs|
(4)

Every word pairs in sentences is tested against theEst function.
Word pairs with the estimating value above the thresholdθwp is
reserved to the next step for relation labeling.

3.2 Relation Labeling and Ranking with KNN
For each candidate word pair we get from the previous step, we

find its K most nearest neighbors (relation instances) in the train-
ing corpus using Equation (3). The neighbors vote for the relation

∗1 http://www.connexor.eu/

name of the word pair then construct a candidate relation triple.
The average similarity over theK neighbors are assigned to the
triple as rank. A thresholdθrel is used to filter out triples ranked
lower. Note that the word pair detection step considers word fea-
tures independently whereas the relation labeling step emphasizes
more on the structure feature of a sentence in addition to word
features.

4. Experiments

4.1 Experiment Setup
We invited twelve college volunteers from different departments

to create a lightweight annotated corpus. They are asked to anno-
tate sentences of Wikipedia web pages about the music band. The
annotation takes the form of a triple (e1, rel, e2). Triple elements
e1 ande2 are words (also named as entity mentions) in the sen-
tence andrel is the relation name connectinge1 ande2. We call
it a lightweight annotation because annotators are not obliged to
any predefined knowledge (e.g. predefined entity types or relation
classes). As a result, a corpus containing 90 Wikipedia articles is
created with 363 sentences being annotated by 774 relation triples.
After an analysis on the relation triples, we found that they form
20 major classes as is shown in Table 2. More than half (415 our
of 774) of the triple relations are covered by the top 20 relation
classes.

Classes from Wikipedia nformation table
genre (70) members (57) origin (48) member role (48)

years active (44) a music group (39) member occupations (26) album (26)
lyrics (13) born in alias instruments

former members die in
associate act web site single birth name

label awards

Table 2: 20 convergent relation classes.

The entire corpus is fed to our extraction process as a training
corpus, although the evaluation is conducted over on the top 20
relation class only.

We created a test corpus containing 10 abstracts randomly se-
lected from Wikipedia music band pages. The corpus does not
overlap with the training corpus. The experiment is carried out
along the process describe in Section 3.. The threshold for word
pair detectionθwp and candidate tripleθrel are set to be 0.2.K is
set to3 based on our observation of the training data.

Because of the specularity of our training corpus, we evaluate
the performance of our method as follows. One of the volun-
teers is invited to classify the extracted relations as right or wrong.
Since we did not use name entity recognition at present, we do
not require the whole entity mention be recognized. For example,
“(Dream, isa, band)” is thought to be correct, although the com-
plete relation should be the “(Dream Theater, isa, band)”.

4.2 Results
From the test corpus, there are 158 relations extracted, among

which 68 are considered to be correct. Under this criterion, we
achieve a precision of43.0%. To show the novelty of the penalty
tree similarity function, we made another experiment with the
same settings, only changing the penalty function (Equation (3))
with the typical dependency tree kernel (Equation (1)). It reports a
precision of15.1%. The penalty tree similarity achieves a signifi-
cant improvement over the dependency tree kernel.

3

The 22nd Annual Conference of the Japanese Society for Artificial Intelligence, 2008

Table 3 summarized the correctly extracted relations by classi-
fying them into corresponding relation classes. We can see that
most of the extracted relations (shown in the upper part of Table
3) fall into the relation classes listed in Table 2. We then use the

Relation Class relation number relation name
genre 27 style,genre,isa

a music group 15 wasan,isa,is
years active 6 formed,startfrom,time,founded

origin 4 locatedin,origin,foundedin
members 6 credit,is

member role 2 as
is 2 is

is a kind of 4 isa,is
others 2 was

Table 3: 68 out of 158 (43.0%) relations are correct, the 68 rela-
tions refelct domain interests.

convergent relation classes as the baseline to test the coverage of
our method. We identify in each test sentence the convergent re-
lation classes (shown in Table 2) it is about. If a relation class
is identified in a sentence, the “expected number” of the relation
class increases by one. If our method extracts at least one relation
of the labeled class, the “extracted number” increases by one. The
result is shown in Table 4 and the recall over the relation classes is
56.6%. The tree kernel reports the coverage of26.9%.

Relation Class expected extracted Relation Class expected extracted
genre 13 9 a music group 12 12
origin 11 4 members 8 1

member role 3 0 years active 6 4

Table 4: Correctly extracted relations appear in 30 sentences, cover
56.6% over the 50 expectations.

5. Conclusion

This paper proposes an extension of the tree-kernel based rela-
tion extraction method. A penalty tree similarity function is pre-
sented which adjust the kernel methods by weighting nodes dif-
ferently according their positions. Comparative experiments on a
lightweight corpus show our method improves extraction perfor-
mance.

References

[BM] Razvan C. Bunescu and Raymond J. Mooney. A
shortest path dependency kernel for relation extrac-
tion. In HLT/EMNLP’2005,.

[BM07] Razvan Bunescu and Raymond Mooney. Learning to
extract relations from the web using minimal super-
vision. InACL’2007, pages 576–583, Prague, Czech
Republic, June 2007.

[CMBT02] H. Cunningham, D. Maynard, K. Bontcheva, and
V. Tablan. GATE: A framework and graphical devel-
opment environment for robust NLP tools and appli-
cations. InACL’2002, pages 168–175, Philadelphia,
July 2002.

[CS04] Aron Culotta and Jeffrey Sorensen. Dependency tree
kernels for relation extraction. InACL’2004, pages
423–429, July 2004.

[CST00] Nello Cristianini and John Shawe-Taylor.An In-
troduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge Univer-
sity Press, March 2000.

[Hau99] D. Haussler. Convolution kernels on discrete struc-
tures. Technical report, 1999.

[HSG] T. Hasegawa, S. Sekine, and R. Grishman. Discov-
ering relations among named entities from large cor-
pora. InACL’2004, pages 415–422.

[MFRW00] Scott Miller, Heidi Fox, Lance A. Ramshaw, and
Ralph M. Weischedel. A novel use of statistical pars-
ing to extract information from text. InANLP’2000,
pages 226–233, Seattle, Washington, USA, April
2000.

[SVH04] Nuno Seco, Tony Veale, and Jer Hayes. An intrinsic
information content metric for semantic similarity in
wordnet. InECAI’2004, pages 1089–1090, Valencia,
Spain, August 2004.

[Wan05] Pei Wang. Experience-grounded semantics: a theory
for intelligent systems.Cognitive Systems Research,
6(4):282–302, 2005.

[YGTH00] Roman Yangarber, Ralph Grishman, Pasi
Tapanainen, and Silja Huttunen. Automatic ac-
quisition of domain knowledge for information
extraction. In COLING’2000, pages 940–946,
August 2000.

[ZAR03] Dmitry Zelenko, Chinatsu Aone, and Anthony
Richardella. Kernel methods for relation extraction.
J. Mach. Learn. Res., 3:1083–1106, 2003.

[ZG] Shubin Zhao and Ralph Grishman. Extracting rela-
tions with integrated information using kernel meth-
ods. InACL’2005, June.

[ZSW+05] Min Zhang, Jian Su, Danmei Wang, Guodong Zhou,
and Chew Lim Tan. Discovering relations between
named entities from a large raw corpus using tree
similarity-based clustering. InIJCNLP’2005, pages
378–389, October 2005.

[ZZJZ07] Guodong Zhou, Min Zhang, Donghong Ji, and
Qiaoming Zhu. Tree kernel-based relation extraction
with context-sensitive structured parse tree informa-
tion. InEMNLP-CoNLL’2007, pages 728–736, 2007.

4

