
The 22nd Annual Conference of the Japanese Society for Artificial Intelligence, 2008

3J1-4

探索アルゴリズムにおける枝刈り手法の結合
Combining Pruning Methods in Search Algorithms

福永アレックス
Alex Fukunaga

東京工業大学
Tokyo Institute of Technology

Given a search algorithm and a set of pruning techniques, which pruning mechanism should be applied at each
node in the search tree? We define and analyze some straightforward heuristic combinations strategies for combining
multiple heuristics. We then experimentally evaluate the heuristic comination strategies on a new, state-of-the-art
branch-and-bound solver for the multiple knapsack problem.

1. Introduction

Search algorithms commonly used in AI, such as back-

tracking, branch-and-bound, and A* depend on various

techniques to control the size of the search space. Prun-

ing techniques try to prune portions of the search tree by

proving that the pruned subtree cannot contain a solution

which is any better than (i) the best solution which has

been found so far, or (ii) a solution which can be found in a

subtree which will be fully explored by the algorithm (but

has not necessarily been explored yet). The former case is

the well-known branch-and-bound method. The latter case,

which actually subsumes the former, is the broader class

of dominance-baseed pruning mechanisms. An admissible

or exact pruning mechanism is guaranteed to never prune

an optimmal solution. For brevity, we use the term prun-

ing mechanism to refer to an admissible, dominance-based

pruning mechanism.

Pruning mechanisms are usually applied at every node

in the search tree. For example, in branch-and-bound for

a maximization problem, an upper bound heuristic value

U is computed at every node and compared with a lower

bound L, and the subtree is pruned if U ≤ L. In general,

there is a trade-off between pruning mechanism power and

complexity: More powerful heuristics (which prune more

nodes)require more time to comput. Thus, in order to for a

pruning mechanism to be considered useful, it must prune

the tree sufficiently to overcome the overhead of applying

the mechanism. This paper investigates the following ques-

tion: Given a set of pruning mechanisms H1, H2, etc., how

should resources be allocated among them, i.e., which prun-

ing mechanism should be applied at each node in order to

minimize runtime?

2. Strategies for Combining Pruning
Heuristics

Let H be an admissible, pruning mechanism.We say that

a search node N is pruned by H , denoted N † H , if the

連絡先: 福永アレックス　東京工業大学　東京都目黒区大岡山
2-12-1 S-18 fukunaga@is.titech.ac.jp

subtree under N will be pruned by an application of H .

We say that a pruning mechanism H2 subsumes another

pruning mechanism H1 if N †H1 ⇒ N †H2 for all nodes N

(in other words, H2 is strictly more powerful than H1.)

The simplest strategy is to choose only one mechanism,

say Ha, and apply it at every node. This pure strategy is

the most common strategy used in practice.

A depth-based switching strategy {(Ha, d), Hb} applies Ha

at every node in the search tree with depth less than or

equal to d, and applies Hb at every node at depths greater

than d. This strategy is most commonly applied when Ha

subsumes Hb, and is significantly more expensive than Hb.

The intuition is to apply the powerful but expensive Hb

where we can get the maximum benefit, and avoid calling

it deep in the tree where its utility is minimal. A problem

with this approach is that a priori, it is not clear what the

depth cutoff d should be.

A Chain strategy {Ha, Hb} first applies mechanism Ha.

If the node is pruned by Ha, then we backtrack. Otherwise,

Hb is applied, and we backtrack if the node is pruned by

Hb. In cases where the cost of computing Ha is significantly

smaller than the cost to compute Hb, this translates to the

intuitively obvious strategy: apply a very cheap pruning

mechanism and try to prune quickly, otherwise, run the

slower pruning mechanism to see if that will result in prun-

ing the node.

Let us consider the pure and chain strategies above. We

define a terminal node as a node where the search algorthm

backtracks due to some reason other than pruning by one of

the pruning mechanisms under consideration. For example,

a node where we backtrack because we reach the natural,

backtrack limit for the problem (e.g., the remaining sub-

problem is empty) is a terminal node.

Let H1 and H2 be two pruning mechanisms, where H2

subsumes H2. For every non-terminal node in the search

tree, there are only three possibilities if H2 subsumes H1:

(a) N †H2 and N †H1 (N can be pruned by both H1 or H2.

(b) ¬(N † H1) and ¬(N † H2) (neither mechanism prunes

N) (c) N † H2 and ¬(N † H1).

If H1 does not subsume H2, then there is a fourth pos-

sibility: (d) ¬(N † H1) and N † H2. However, meaningful

1



The 22nd Annual Conference of the Japanese Society for Artificial Intelligence, 2008

analysis of this case seems to require estimations of the

amount of pruning performed, which is a difficult problem.

Thus, we assume that H2 subsumes H1.

First, consider the pure strategy which applies H2 at each

node N . The cost of executing this strategy is CH2(N), or

more succinctly, CH2 .

Next, consider the chain strategy {H1, H2}, which applies

H1 first, and backtracks if N is pruned, and otherwise ap-

plies H2. In case (a), the strategy will first apply H1, prune

the node, and backtrack, so the cost of the node is CH1 . In

case (b), H1 and H2 are both applied (unsuccessfully), and

the cost is CH1 + CH2 . In case (c), H1 is applied first and

fails to prune the node, then H2 is applied successfully, so

the cost is CH1 + CH2 .

Since H1 subsumes H2, the set of nodes generated by the

chaining strategy {H2, H1} is exactly the same the set of

nodes generated by the pure strategy H1. The only differ-

ence is the runtimes of the two strategies. We can compare

the runtimes of these two strategies by comparing the ex-

pected runtime cost per node.

For the pure H1 strategy, the cost per node is simply

CH2 . For the {H1, H2} chaining strategy, the cost per node

is PaCH1 +Pb(CH1 +CH2)+Pc(CH1 +CH2), where Pa, ..., Pc

are the probability of cases a-c defined above, respectively.

The H1, H2 strategy is preferable to the pure H1 strategy

when the expected cost per node for the chaining strategy

is lower than the cost per node of the pure strategy. That

is: CH2 > PaCH1 + Pb(CH1 + CH2) + Pc(CH1 + CH2).

Simplifying and solving for Pa (using the fact that Pa +

Pb + Pc = 1), we obtain the result that the {H2, H1} strat-

egy has a lower cost per node than the pure H1 strategy if

and only if Pa > CH1/CH2 .

This allows us to predict, for any particular node,

whether to use the pure strategy H2, or the chain strat-

egy {H1, H2}. In addition, this suggests an adaptive chain

strategy, where we decide upon the mechanism strategy

(pure or chain) by applying the above inequality to data col-

lected at runtime (e.g., the pruning probabilities and costs

can be collected per search depth).

3. Experiments: The Multiple Knap-

sack Problem

We compared pure, chain, and adaptive chain strate-

gies using a branch-and-bound-based solver for the Multiple

Knapsack Problem (MKP).

The MKP is a classical combinatorial optimization prob-

lem, which generalizes the well-known 0-1 Knapsack prob-

lem to multiple knapsacks. Given m containers (bins) with

capacities c1, ..., cm, and a set of n items, where each item

has a weight w1, ..., wn and profit p1, ..., pn. Assigning some

subsets of the items to the containers to maximize the total

profit of the items, such that the sum of the item weights

in each container does not exceed the container’s capac-

ity, and each item is assigned to at most one container is

the 0-1 Multiple Knapsack Problem, or MKP. The MKP

has numerous applications, including task allocation among

autonomous agents continuous double-call auctions, multi-

processor scheduling, vehicle/container loading, and the as-

signment of files to storage devices in order to maximize the

number of files stored in the fastest storage devices.

The MKP is strongly NP-complete. The previous, state-

of-the-art, exact algorithm for the MKP is Pisinger’s Mulk-

nap algorithm [3]. Recently, we developed bin-completion,

a new, branch-and-bound algorithm for the MKP which

integrates a powerful dominance criterion, symmetry de-

tection techniques, as well as bounding techniques used

in previous solvers. Bin-completion is a general strategy

which can be applied to the class of multi-container, as-

signment problems, including the MKP, bin-packing, and

bin-covering problems. Experimental results showed that

bin-completion significantly outperforms the previous state

of the art algorithm on difficult benchmark instances [2].

We have developed a number of pruning mechanisms for

the bin-completion algorithm. These are based on a domi-

nance relationship between candidate assignments of items

to bins, and symmetry relations betwen search nodes [1].

In particular, these include a powerful but complex prun-

ing mechanism, path-symmetry, and a cheap, less powerful

pruning mechanism, 2-swap symmetry (see [1] for a descrip-

tion of these mechanisms).

3.1 Summary of Results
We compared pure, chain, and adaptive chaining strate-

gies for these two pruning mechanisms (path-symmetry and

2-swap symmetry). Experiments were performed on the

same groups of benchmarks as [1]. As an example, on a

set of 20 standard benchmark problems with 25 bins and

50 items where the item weights and profits are highly cor-

related (c.f. [3]), we found that the chain strategy solves

problems on average 3 times faster than either pure strat-

egy (pure path-symmetry and pure 2-swap). Thus, we have

found that the chain strategy is an important component

of the current, state-of-the-art algorithm for the MKP.

However, our current implementation of adaptive chain-

ing yielded results which were approximately 25% slower

than the chain strategy. Future work will focus on develop-

ing a robust, adaptive chain strategy which can outperform

the chain strategy.

参考文献

[1] A. Fukunaga. Exploiting symmetry in multiple knap-

sack problems. In Proc. CP-07 Workshop on symmetry

and constraint satisfaction problems, 2007.

[2] A. Fukunaga and R. Korf. Bin-completion algorithms

for multicontainer packing, knapsack, and covering

problems. Journal of Artificial Intelligence Research,

28:393–429, 2007.

[3] D. Pisinger. An exact algorithm for large multiple knap-

sack problems. European Journal of Operational Re-

search, 114:528–541, 1999.

2


