
The 22nd Annual Conference of the Japanese Society for Artificial Intelligence, 2008

2J2-3

A New GA representation for the Portfolio Optimization Problem

Claus C. Aranha∗1 Hitoshi Iba∗2

The University of Tokyo, Department of Eletrical Engineering and Information Systems

We introduce a new representation for candidate solutions in Genetic Algorithms applied to Resource Allocation
problems. The common approach for this problem is an array-based representation. Our proposal is the use of a
binary tree to represent individual solutions, which possess an innate structure that allows the implementation of
smart genetic operators. We apply this technique to the Portfolio Optimization problem, in which a finite capital
must be divided among a number of financial assets with the goals of minimizing the risk and maximizing the
estimated return measures. Our experiments show that the use of tree based genomes results in solutions that are
less complex, while maintaining the same utility value, than those generated by traditional techniques.

1. Introduction

Genetic Algorithms (GA) is a random search heuristic

that is based on the evolutionary process of living beings.

In a GA, we encode the solution to the problem that we

want to solve as a “genome”, generate many of those so-

lutions, test them according to a given heuristic (the fit-

ness function), and generate new candidates from the best

ranked “parents”. By repeating this process, the algorithm

is able to find good solutions to a wide range of practical

problems.

We propose a new way to represent candidate solutions

for the Portfolio Optimization problem. This problem con-

sists of a fixed ammount of financial capital that must

be divided among a variety of assets so as to maximize

the Estimated Return, and minimize the Risk. It has

been shown that GA is appropriate to solve this prob-

lem, and many works have been published on this subject

[Lin 05, Aranha 07, Yan 07].

While these works concentrate on choosing good fitness

functions, or adding new real-life constraints to the problem

model, all of them use a traditional array-based structure

to represent candidate solutions as genomes in the GA. The

weakness of this representation is that the array possess no

structure, so it is not possible for the algorithm to learn

which assets are important or not to a given scenario.

Our approach uses a tree-based representation, where the

terminal nodes are the assets, and the non-terminal nodes

indicate the relationship between these assets. So the Ge-

netic Algorithm is also able to evaluate, indirectly, whether

the candidate tree represents an accurate relationship be-

tween assets - in other words, the structure of the portfolio

emerges in the population.

Another advantage of the tree structure is that it is possi-

ble to use the fitness function of the whole tree to evaluate

any subtree. This information allows us to indentify the

building blocks in an individual (parts of the tree that con-

tribute most to the utility value), and to design crossover

operators that maintain these building blocks.

Contact:

caranha@iba.k.u-tokyo.ac.jp; 03-5841-8436
iba@iba.k.u-tokyo.ac.jp; 03-5841-7424

In this works, we execute comparative experiments be-

tween the array structure and the tree structure, using his-

torical data from the NASDAQ and NIKKEI markets. The

results of these experiments show that the GA with tree-

based genomes produces portfolios that are simpler than

traditional array based GA.

The tree-based solutions possess fewer assets that do not

contribute to the portfolio (have a very low weight). This

results in a lower trading cost. Finally, we believe that these

results can be applied to other, similar resource allocation

problems.

2. Problem Description

The mathematical model of the Portfolio Optimization

problem is due to Markowitz [Markowitz 87]. We define a

portfolio P as a set of N real valued weights (w0, w1, ...wN )

which correspond to the N available assets in the market.

The weights obey the following:

N∑
i=0

wi = 1 (1)

0 ≤ wi ≤ 1 (2)

Each asset has an expected return value, expressed by

Ri. The expected return value for the portfolio is given by

the sum of the expected return values for the assets:

RP =

N∑
i=0

Riwi (3)

Also, each asset has a risk measure, σi. The risk of an

asset is defined as the variance of that asset’s returns over

time, and the risk of the Portfolio is defined as the covari-

ance between its assets:

σP =

N∑
i=0

N∑
j=0

σijwiwj (4)

Where σij , i 6= j is the covariance between i and j, and σii

is the variance of asset i.

From the definitions of the Risk rate and the Estimated

Return, we can derive a Utility function to use as Fitness for

1



The 22nd Annual Conference of the Japanese Society for Artificial Intelligence, 2008

the Genetic Algorithm. The most commonly used Fitness

function is the Sharpe Ratio, which is defined as:

Sr =
RP − Rriskless

σP
(5)

Where Rriskless is the risk-free rate, an asset with 0 risk and

a fixed, low return rate (for example, government bonds).

The Sharpe Ratio expresses the trade-off between risk and

return for a Portfolio. A higher Sr value indicates a better

Portfolio.

This basic model for the Portfolio Optimization Problem,

as formulated by Markowitz, can be solved by Quadratic

programming [Yuh-Dauh-Lyu 02]. However, when adding

real world constraints to the problem (large number of as-

sets, restrictions to the values of weights, trading costs, etc),

the search space becomes non-convex, and the problem be-

comes unsolvable by these methods. This is what motivates

the use of GA in this problem.

3. Proposal

Traditionally, arrays have been used to represent solution

candidates in GAs. For the Portfolio problem a real-valued

array, where each element corresponds to the weight of one

security in the market, is used. The order of the assets is

arbitrary, and linear crossover is usually applied.

However, the array representation has some limitations.

It is not possible to assign any structure or relationship to

assets and their weights inside an array. Since the choice of

portfolio depends on the relationships between assets, some

information is lost when converting a portfolio to a simple

array.

In this work we propose the use of a Tree-based represen-

tation for the solution candidates of the Portfolio Optimiza-

tion problem. This idea is based on previous GP works,

where a weigth tree was used to develop polynomials for

system analysis [Nikolaev 01].

The advantage of such representation is that the fitness

function is applicable not only for the whole individual

(main tree), but for partitions of the solution as well (sub

trees). This allow us to create informed crossover and mu-

tation operators, and to extract structure information from

the individuals.

3.1 Tree Structure
A candidate solution is implemented as a binary tree.

Each terminal node correspond to an asset in the problem

(one asset may appear in more than one node). Each non-

terminal node contains a real value between 0 and 1, w,

which represent the relative weights between its left child,

and right child. The left child has weight w, and the right

child has weight w − 1 (see figure 1).

To extract the portfolio from the genome, we calculate the

weight of each terminal node by multiplying the weights of

all nodes that need to be visited to reach that terminal (w

if left, 1 − w if right). This can be computed efficiently by

dynamic programming.

This structure means that a portfolio containing all N

available assets requires a tree with depth log2 N . For in-

0.3

a1

0.2

a2

0.5

0.7

a2a4
a5

a1 a2 a3 a4 a5

Weight

Name AMZN GOOG INTL MSFT YHOO

0.22 0.3500.03 0.4

図 1: A tree genome and its corresponding portfolio. The

terminal nodes represent assets in the portfolio, and the

non-terminal nodes represent the relative weight between

the assets.

stance, for the NASDAQ100 market, which contains 100

assets, it will be needed a tree of depth 7.

3.2 Fitness Calculation
To calculate the return for each sub tree, we modify the

calculation of the return of a tree N to become a recursive

function where:

R(N) = wR(cl) + (1 − w)R(cr) (6)

If N is a node Where cl and cr are its left and right children,

respectively. And if N is a leaf (asset):

R(N) = MA(aN ) =

∑T−1

t=0
r(aN )t−T

T
(7)

Where MA is the moving average, which is the average of

the return value of the last T periods (T is parametric).

This recursive function has the same complexity than iter-

atively calculating the estimated return for a full portfolio,

so we can have the return value for the sub trees at no extra

cost.

The calculation of the risk for each sub tree, on the other

hand, becomes more expensive. The variance of the sum of

two sub trees is given as:

σ(cl +cr) = w∗σ(cl)+(1−w)σ(cr)+2w∗(1−w)Cov(cl, cr)

(8)

Where the risk of the children sub trees, σ(cl) and σ(cr) is

given at the leaf level by the data set, and is the result of the

above calculation at each level. So the covariance between

each sub tree needs to be re-calculated, and this increases

the overhead of the system. To avoid unnecessary calcula-

tions, the covariance is only re-calculated only in the sub

trees that were modified, during mutation and crossover.

2



The 22nd Annual Conference of the Japanese Society for Artificial Intelligence, 2008

0.2

0.50.4

0.6 0.60.30.1

a1a3 a3 a2 a1 a2 a4 a5

0.2

0.4

0.30.1

a1a3 a3 a2

0.8

a4 a5

0.9

a5

0.1

a3

Mutation

Crossover

BadGood GoodBad

ChildParent 2Parent 1

図 2: Crossover (BWS) and Mutation operators for the tree

representation.

3.3 Genetic Operators
In a Genetic Algorithm, genetic operators are functions

used to recombine the candidate solutions with the highest

fitness values in order to generate new candidate solutions.

There are usually two kinds of operators, the Mutation op-

erator, which modifies a single candidate, and the Crossover

operator, which recombines two candidates.

The Mutation operator works by cutting a tree at a ran-

dom node, and generating a new sub tree from that node.

The cutoff node is chosen randomly. The role of the mu-

tation operator is to introduce new genes into the popu-

lation, like new terminals or new sub-tree structures. It

corresponds to the “explorarion” policy of a learning algo-

rithm.

The Crossover operator works by exchanging sub trees

between two individuals. One point at a given depth is

chosen for each tree, and the sub trees that start from those

nodes are swapped. It corresponds to the “exploitation”

policy of a learning algorithm

We call the operator Simple Crossover if the choice of

the crossover nodes is random, or based on data not re-

lated to the fitness (like depth). We also define the Guided

Crossover, which uses fitness information from the sub trees

of an individual to choose the crossover nodes in each par-

ent.

For example, a simple Guided Crossover is the Best-

Worst Sub tree Crossover (BWS). Here, a random depth

is chosen, and the sub trees at that depth with the best

and worst fitness values are identified. The sub tree with

the worst fitness of the first parent is switched with the sub

tree with the best fitness of the second parent.

Both operators are illustrated in figure 2.

図 3: Average number of assets and significant assets when

using array-based genomes (above) and tree-based genomes

(below). The array genome is not able to eliminate super-

fluous assets.

4. Experiments

We performed a series of experiments to compare the per-

formance of the tree based representation with the array

based representation. As the main goal of the experiments

is to observe the differences in the behavior of the GA with

each representation, a single scenario framework was used,

and no particular constraints were taken into consideration.

For each scenario (1 month) the experiment was repeated

30 times with different random seeds - the results showed

here are averages of these 30 runs. We ran a total of 72

scenarios, 36 from the NASDAQ100 data set (100 assets

total), and 36 from the NIKKEI data set (225 assets total).

The results for this experiment were remarkably similar,

independently of the scenario and dataset. The Tree-based

population started with a large number of assets (near 100%

of the total available assets), but after 30 to 70 generations

the number of assets falls down to almost the number of

significant assets. The array-based population, on the other

hand, starts at around 50% of the total available assets;

quickly rises to 80-90% of the assets, and then drops and

stabilizes at 30-40% of the assets.

This pattern is illustrated on figure 3, taken from the

NASDAQ Jan-2004 scenario. The exact same pattern can

be seen in all other scenarios, with minor variations on the

3



The 22nd Annual Conference of the Japanese Society for Artificial Intelligence, 2008

表 1: Representative Results

Scenario Name Utility Average Ass ets Significant Assets

and Date Index GA-Array GA-Tree GA-Array GA-Tree GA-Array GA-Tree

hline NASDAQ 2004/Jan 0.023 0.018 0.017 57.74 19.09 9.66 9 .65

NASDAQ 2005/Jan 0.077 0.035 0.057 40.3 12.08 9.93 7. 91

NASDAQ 2006/Jan 0.021 0.049 0.074 40.15 10.03 11.81 7.79

NIKKEI 2004/Jan 0.004 0.002 0.003 115.34 25.12 17.5 15.83

NIKKEI 2005/Jan -0.003 -0.012 -0.001 143.01 32.10 19.42 16.11

NIKKEI 2006/Jan 0.014 0.19 0.13 85.31 23.78 35.6 14.08

steepness of the curves, but not on the general plateaus.

In practice, this means that the optimal portfolios gen-

erated by traditional GA usually contained the majority of

the assets in the market, with minimal weights (less than

0.3%), and a few assets with large weights that composed

the “body” of the portfolio. Because the crossover operator

in an Array GA cannot eliminate an individual asset (no

structure), these insignificant assets get passed down the

generations, if they don’t contribute or hamper the fitness

function.

In the tree-based GA, on the other hand, the guided

crossover operator eliminates subtrees which do not con-

tribute to the utility value of the portfolio. The practical

result is that the optimal portfolios for the tree-based GA

are very similar to those of the array-based GA in regard to

the main assets, but the insignificant assets are not present

in these solutions.

Quantitative differences between the two methods are

highlighted in table 1. Significant assets means assets in

the Portfolio that have a contribution larger than 3% to

the total value of the portfolio.

We can see that the number of significant assets is roughly

the same for both methods. On the other hand, the final

number of total assets is much higher for the Array-based

representation, which denotes its inability to remove from

the portfolio genes that are no longer contributing to the

solution.

5. Discussion

We have proposed a new representation for the GA imple-

mentation of the Portfolio Optimization problem. In this

approach, a tree based genome is used instead of the ar-

ray based genome. The tree based representation has ad-

vantages such that it allows the emergence of structure by

means of the BWS crossover operator.

Our experimental results showed that by using a Tree

representation instead of an Array representation, the GA

manages to generate simpler results, which contain only the

assets really needed for the Portfolio.

This result is important to real-world applications, as one

of the most limiting constraints in this problem is the Trad-

ing Cost [Aranha 07]. If two portfolios have the same re-

turn, the smallest of them will have a smaller trading cost

when entering and leaving the position.

In this work we analyzed some of the difference in results

between the approaches (total number of assets, number

of significant assets, final fitness value, convergence speed).

Population diversity, performance in multi-scenario frame-

works (addition of cost) and the addition of constraints are

a few examples of such open questions, which we intend to

address in the future.

参考文献

[Aranha 07] Aranha, C. and Iba, H.: Modelling Cost into

a Genetic Algorithm-based Portfolio Optimization Sys-

tem by Seeding and Objective Sharing, in Proc. of the

Conference on Evolutionary Computation, pp. 196–203

(2007)

[Lin 05] Lin, D., Li, X., and Li, M.: A Genetic Algorithm

for Solving Portfolio Optimization Problems with Trans-

action Costs and Minimum Transacton Lots, LNCS, No.

3612, pp. 808–811 (2005)

[Markowitz 87] Markowitz, H.: Mean-Variance analysis in

Portfolio Choice and Capital Market, Basil Blackwell,

New York (1987)

[Nikolaev 01] Nikolaev, N. Y. and Iba, H.: Regulariza-

tion Approach to Inductive Genetic Programming, IEEE

Transactions on evolutionary computation, Vol. 5, No. 4,

pp. 359–375 (2001)

[Yan 07] Yan, W. and Clack, C. D.: Evolving Robust GP

Solutions for Hedge Fund Stock Selection in Emerging

Markets, in GECCO 2007 - Genetic and Evolutionary

Computation Conference, London, England (2007), ACM

Press

[Yuh-Dauh-Lyu 02] Yuh-Dauh-Lyu, : Financial Engineer-

ing and Computation, Cambridge Press (2002)

4


