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Dimensionality Reduction of Partially Labeled Multimodal Data
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Dimensionality reduction is one of the important preprocessing steps in the high-dimensional data analysis. In
the semi-supervised learning scenario with partially labeled samples, we expect that samples in the same cluster
are likely to share the common label (i.e. ‘cluster assumption’), and based on this belief we classify the unlabeled
samples. Therefore, when reducing the dimensionality of partially labeled samples, it is desirable to preserve
the cluster structures of the data in addition to separating the labeled samples in different classes from each
other. In this paper, we propose a new semi-supervised dimensionality reduction method that can achieve locality
preservation and between-class separation at the same time. The proposed method has an analytic optimal solution
and is computationally efficient. Simulations with benchmark data sets underline the usefulness of the proposed
method.

1. Introduction

The goal of dimensionality reduction is to embed high-

dimensional data samples in a low-dimensional space such

that most of ‘intrinsic information’ contained in the original

data is preserved. Once dimensionality reduction is carried

out appropriately, the compact representation of the data

can be used for various succeeding tasks such as visualiza-

tion, classification, etc.

In the supervised learning scenario where data samples

are accompanied with class labels, Fisher discriminant anal-

ysis (FDA) (Fisher 36) (Fukunaga 90) is a popular dimen-

sionality reduction method. FDA seeks an embedding

transformation such that the between-class scatter is max-

imized and the within-class scatter is minimized. FDA

works very well if samples in each class are Gaussian with

common covariance structure. However, it tends to give

undesired results if samples in one class form several sep-

arate clusters (i.e., multimodal). To improve the perfor-

mance of FDA, local Fisher discriminant analysis (LFDA)

(Sugiyama 06) was proposed.

Although LFDA overcome the weakness of FDA, its per-

formance tends to be degraded when only a small number

of labeled samples are available. In such cases, it is effective

to make use of unlabeled samples which are often available

abundantly (i.e., semi-supervised learning). A requirement

for the success of semi-supervised learning is the cluster as-

sumption; samples in the same cluster have the same label

(Chapelle 06). This implies that unsupervised dimensional-

ity reduction methods which can preserve cluster structures

would be useful in semi-supervised learning problems.

Locality-preserving projection (LPP) (He 04) is an unsu-

pervised dimensionality reduction method that meets this

requirement. LPP seeks an embedding transformation such

that nearby sample pairs in the original high-dimensional

space are kept close in the embedding space. Thus, LPP

allows us to reduce the dimensionality of the data without

losing the local structure.

In this paper, we propose a new semi-supervised dimen-
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sionality reduction method. Our approach is to combine

LFDA and LPP in order to trade between-class separation

with locality preservation. The proposed method includes

FDA, LFDA, and LPP as special cases. Furthermore, the

proposed method inherits the computational advantage of

FDA, LFDA, and LPP, i.e., an analytic solution is avail-

able and can be computed based on the eigendecomposition.

Thus the proposed method is computationally efficient and

reliable. The usefulness of the proposed method is illus-

trated by experiments.

2. Linear Dimensionality Reduction

In this section, we formulate the problem of linear dimen-

sionality reduction and review existing methods.

2.1 Formulation and Notation
Let xi ∈ Rd (i = 1, 2, . . . , n) be d-dimensional samples,

and let X be the matrix of all samples:

X ≡ (x1|x2| · · · |xn). (1)

Let z ∈ Rr (1 ≤ r ≤ d) be a low-dimensional representation

of high-dimensional sample x ∈ Rd, where r is the dimen-

sionality of the reduced space. Effectively we consider d to

be large and r to be small, but not limited to such cases.

For the moment, we focus on linear dimensionality re-

duction, i.e., using a d × r transformation matrix T , an

embedded representation z of a sample x is given by

z = T >x, (2)

where > denotes the transpose of a matrix or a vector.

When discussing supervised learning problems, we as-

sume class labels yi ∈ {1, 2, . . . , c} associated with the sam-

ples xi are available, where c is the number of classes. We

denote the number of samples in class ` ∈ {1, 2, . . . , c} by

n`.

Many dimensionality reduction techniques developed so

far are based on the optimization problem of the following

form.

TOPT ≡ argmax
T∈Rd×r

[
tr

((
T >CT

)−1

T >CT

)]
. (3)
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Let {ϕk}d
k=1 be the eigenvectors associated with the eigen-

values λ1 ≥ λ2 ≥ · · · ≥ λd of the following eigenvalue prob-

lem:

Cϕ = λCϕ. (4)

Then a solution TOPT is analytically given as follows (e.g.,

(Fukunaga 90))

TOPT = (ϕ1|ϕ2| · · · |ϕr). (5)

2.2 Fisher Discriminant Analysis for Dimen-
sionality Reduction

A popular supervised dimensionality reduction tech-

nique is Fisher discriminant analysis (FDA) (Fisher 36)

(Fukunaga 90). Let S(w) and S(b) be the within-class scat-

ter matrix and the between-class scatter matrix:

S(w) ≡
c∑

`=1

∑

i:yi=`

(xi − µ`)(xi − µ`)
>, (6)

S(b) ≡
c∑

`=1

n`(µ` − µ)(µ` − µ)>, (7)

where µ` ≡
∑

i:yi=` xi/n` and µ ≡
∑n

i=1 xi/n. The FDA

transformation matrix TFDA is defined as

TFDA ≡ argmax
T∈Rd×r

[
tr

((
T >S(w)T

)−1

T >S(b)T

)]
. (8)

That is, FDA seeks a transformation matrix T such that

the between-class scatter is maximized and the within-class

scatter is minimized in the embedding space Rr. A solu-

tion TFDA is given by Eqs.(4) and (5) with C = S(b) and

C = S(w).

The between-class scatter matrix S(b) has at most rank

c − 1 (Fukunaga 90). This implies that FDA can find at

most c−1 meaningful features; the remaining features found

by FDA can be arbitrarily rotated in the null space of S(b).

This is an essential limitation of FDA for dimensionality

reduction and is very restrictive in practice.

2.3 Locality-Preserving Projection
A useful unsupervised dimensionality reduction technique

is locality-preserving projection (LPP) (He 04). Let A be

the affinity matrix, i.e., the n-dimensional square matrix

with Ai,j being the affinity between xi and xj . We assume

that Ai,j ∈ [0, 1]; Ai,j is large if xi and xj are ‘close’ and

Ai,,j is small if xi and xj are ‘far apart’. There are several

different manners of defining A. All through this paper, we

determine the affinity matrix A by the local scaling method

(Zelnik-Manor 05). Let S(n) and S(l) be the normalization

matrix and the local scatter matrix defined by

S(n) ≡ XDX>, (9)

S(l) ≡ −1

2

n∑

i,j=1

Wi,j(xi − xj)(xi − xj)
>, (10)

where Wi,j ≡ Ai,j/n and D is the n-dimensional diagonal

matrix with Di,i ≡
∑n

j=1 Wi,j . The LPP transformation

matrix TLPP is defined as

TLPP ≡ argmax
T∈Rd×r

[
tr

((
T >S(n)T

)−1

T >S(l)T

)]
. (11)

That is, LPP seeks a transformation matrix T such that

nearby data pairs in the original space Rd are kept close

in the embedding space Rr. Thus, LPP tends to preserve

the local structure of the data. (T >S(n)T )−1 works as a

constraint to avoid degeneracy. A solution TLPP is given

by Eqs.(4) and (5) with C = S(l) and C = S(n).

2.4 Local Fisher Discriminant Analysis
FDA tends to perform poorly when the data has mul-

timodality or outliers (Fukunaga 90). To cope with this

problem, a localized variant of FDA called local Fisher dis-

criminant analysis (LFDA) was proposed (Sugiyama 06).

S(w) and S(b) defined by Eqs.(6) and (7) are expressed as

S(w) ≡ 1

2

n∑

i,j=1

W
(w)
i,j (xi − xj)(xi − xj)

>, (12)

S(b) ≡ 1

2

n∑

i,j=1

W
(b)
i,j (xi − xj)(xi − xj)

>, (13)

where

W
(w)
i,j ≡

{
1/n` if yi = yj = `,

0 if yi 6= yj ,
(14)

W
(b)
i,j ≡

{
1/n − 1/n` if yi = yj = `,

1/n if yi 6= yj .
(15)

1/n − 1/n` in Eq.(15) is negative while 1/n` and 1/n in

Eqs.(14) and (15) are positive. This implies that if the

data pairs in the same class are made close, the within-

class scatter matrix S(w) gets ‘small’ and the between-class

scatter matrix S(b) gets ‘large’. On the other hand, if the

data pairs in different classes are made further apart, the

between-class scatter matrix S(b) gets ‘small’. Therefore,

we may interpret FDA as keeping the sample pairs in the

same class close and making the sample pairs in different

classes apart.

Based on the above pairwise expression, the local within-

class scatter matrix S(lw) and the local between-class scat-

ter matrix S(lb) are defined as

S(lw) ≡ 1

2

n∑

i,j=1

W
(lw)
i,j (xi − xj)(xi − xj)

>, (16)

S(lb) ≡ 1

2

n∑

i,j=1

W
(lb)
i,j (xi − xj)(xi − xj)

>, (17)

where

W
(lw)
i,j ≡

{
Ai,j/n` if yi = yj = `,

0 if yi 6= yj ,
(18)

W
(lb)
i,j ≡

{
Ai,j(1/n − 1/n`) if yi = yj = `,

1/n if yi 6= yj .
(19)

Namely, the values for the sample pairs in the same class are

weighted according to the affinity Ai,j . This means that far

apart sample pairs in the same class have less influence on

S(lw) and S(lb). When Ai,j = 1 for all i, j, S(lw) and S(lb)

are reduced to the original S(w) and S(b), respectively.
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The LFDA transformation matrix TLFDA is defined as

TLFDA ≡ argmax
T∈Rd×r

[
tr

((
T >S(lw)T

)−1

T >S(lb)T

)]
.

(20)

That is, LFDA seeks a transformation matrix T such that

nearby data pairs in the same class are made close and the

data pairs in different classes are made apart; far apart

data pairs in the same class are not imposed to be close.

A solution TLFDA is given by Eqs.(4) and (5) with C =

S(lb) and C = S(lw). S(lb) usually has full rank and thus

LFDA can be applied to dimensionality reduction into any

dimensionality.

3. Semi-Supervised Dimensionality Re-
duction

If only a small number of labeled samples are available,

supervised dimensionality reduction methods tend to over-

fit the embedding space to the labeled samples; thus their

performance can be heavily degraded. In such cases, it is

effective to utilize unlabeled samples which are often avail-

able abundantly (i.e., semi-supervised learning). The suc-

cess of semi-supervised learning is highly dependent on the

cluster assumption; samples in the same cluster belong to

the same class. This implies that cluster preserving dimen-

sionality reduction methods such as LPP could be useful in

semi-supervised learning problems.

Based on the above idea, in this section, we propose a

new semi-supervised dimensionality reduction method by

combining LFDA and LPP. From here on, we consider the

case where some of the samples {xi}n
i=1 are labeled and the

rest are unlabeled.

3.1 Definition
The embedding transformations of LPP and LFDA can

be analytically computed based on the eigendecompositions

(See Sections 2.3 and 2.4). Our idea is to combine the eigen-

value problems of LPP and LFDA and solve them together.

This allows us to maintain the computational efficiency and

reliability of LPP and LFDA.

More specifically, for a weight β ∈ [0, 1], we solve the

eigenvalue problem (4) with C = S and C = S, where

S ≡ (1 − β)S(lb) + βS(l), (21)

S ≡ (1 − β)S(lw) + βS(n). (22)

Then a solution is still given by Eq.(5). Originally, LFDA

is defined only for labeled samples. Therefore, when com-

puting S(lb) and S(lw), we assign zero to W
(lb)
i,j and W

(lw)
i,j

if at least one of xi and xj is unlabeled; if both of them are

labeled, we compute W
(lb)
i,j and W

(lw)
i,j by Eqs.(19) and (18)

as usual. Similarly, LPP is originally defined only for un-

labeled samples. When computing S(l) and S(n), we treat

all the samples {xi}n
i=1 as unlabeled.

If β = 0, the proposed method is operated as fully super-

vised (i.e., all the unlabeled samples are discarded) and is

reduced to LFDA. On the other hand, if β = 1, the pro-

posed method is operated as fully unsupervised (i.e., all the
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Figure 1: Embedded toy data samples by each method.

Filled (unfilled) symbols are labeled (unlabeled) samples.

labels are discarded) and is reduced to LPP. If 0 < β < 1,

the proposed method makes a compromise and gives an in-

termediate result between LFDA and LPP.

3.2 Illustrative Examples
In order to illustrate how the proposed method behave,

we performed experiments with a 20-dimensional toy data

set. The first two dimensions are ‘two-moon’ data and the

others are Gaussian noise. We have 10 labeled samples

and 490 unlabeled samples in each moon. The optimally

embedded 2-dimensional samples are depicted in the top-

left graph of Figure 1.

The samples embedded by LFDA is illustrated in the

top-right graph of Figure 1. It shows that LFDA nicely

separates the labeled samples in different classes from each

other. However, the unlabeled samples (not used in LFDA)

are mixed and hence the classification performance of un-

labeled samples may be poor.

The samples embedded by LPP is illustrated in the

bottom-right graph in Figure 1. It shows that two clusters

are rather separated. However, since the label information

is not used in LPP, the samples in different classes are mixed

in the embedding space.

The samples embedded by the proposed method with

β = 0.5 is illustrated in the bottom-left graph in Figure

1. Compared to LFDA and LPP, the cluster structures are

rather preserved and labeled samples in different classes are

well separable.

4. Semi-Supervised Classification Sim-
ulation

In this section, we evaluate the performance of the pro-

posed method using the IDA data sets (Rätsch 01). As a

performance measure, we adopt the misclassification rate
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by a graph regularization method (Chapelle 06), i.e., using

m labeled samples {xi, yi}m
i=1 (1 ≤ m < n) and n − m un-

labeled samples {xi}n
i=m+1, predicted labels {ỹi}n

i=m+1 are

obtained as

argmin
{ỹi}n

i=1

[
m∑

i=1

(ỹi − yi)
2 + γ

n∑

i,j=1

Ai,j(ỹi − ỹj)
2

]
, (23)

where we set γ = 1.

Figure 2 depicts the misclassification error rates as func-

tions of the dimensionality of the embedding space. This il-

lustrates an interesting tendency: When β = 0 (i.e., LFDA)

works better than β = 1 (i.e., LPP), an intermediate β

tends to outperform β = 0. On the other hand, when β = 1

works better than β = 0, an intermediate β tends to be

outperformed by β = 0.

This tendency could be interpreted as follows. When

β = 0 is better than β = 1, the cluster assumption may

be unreliable and label information is essential. However,

since only a small number of labeled samples are available,

the embedding space found by β = 0 could be overfitted

to the labeled samples. In such cases, the ‘weak’ cluster-

preservation can improve the performance.

On the other hand, when β = 1 is better than β = 0,

the cluster assumption would be highly reliable and local

structure preservation is essential. In such cases, using la-

bel information can collapse local structures since (possibly

nearby) labeled samples in different classes need to be sep-

arated from each other. As a result, β < 1 tends to yield an

embedding space that is overfitted to the labeled samples.
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Figure 2: Misclassification error rates as functions of the

dimensionality of the embedding space.

5. Conclusions

We proposed a novel semi-supervised dimensionality re-

duction method, which efficiently combines LFDA and LPP

and includes FDA, LFDA, and LPP as special cases. The

proposed method trades locality preservation with between-

class separation and tends to outperform existing methods

particularly when the cluster assumption is rather reliable.

The remaining issue to be discussed—which is common

to all semi-supervised learning techniques—is how to op-

timize the values of the tuning parameters; in our case,

the dimensionality r of the reduced space and the trade-

off parameter β. We may employ cross-validation for this

purpose, but it has two potential problems. The first prob-

lem is that number of labeled samples is usually small in

semi-supervised learning scenarios and thus cross-validation

is not reliable (Chapelle 06). The second problem is that

the labeled samples and unlabeled samples often follow dif-

ferent distributions (e.g., ‘two-moon’ data set in Figure 1).

Such a situation is called the covariate shift in statistics

(Shimodaira 00) and standard cross-validation is known to

be significantly biased. Applying covariate shift adaptation

techniques to this problem would be a promising direction

to be investigated.
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