
The 21st Annual Conference of the Japanese Society for Artificial Intelligence, 2007

3D9-2

Robot Control by Least-Squares Policy Iteration
with Geodesic Gaussian Kernels

Hirotaka Hachiya Masashi Sugiyama

Department of Computer Science, Tokyo Institute of Technology

The least-squares policy iteration approach works efficiently in value function approximation, given appropriate
basis functions. Because of its smoothness, the Gaussian kernel is a popular and useful choice as a basis function.
However, it does not allow for discontinuity which typically arises in real-world reinforcement learning tasks. To
overcome this problem, new basis functions called geodesic Gaussian kernels which exploit the non-linear manifold
structure of state spaces have been proposed. In this paper, we apply the geodesic Gaussian kernels to simulated
robot arm control and Khepera robot navigation and demonstrate its usefulness.

1. Introduction

Value functions are essential ingredients of reinforcement

learning (RL) in the context of solving Markov decision

processes (MDPs) using policy iteration methods [7]. In

problems with large discrete or continuous state spaces, it

becomes necessary to employ function approximation meth-

ods to represent the value functions. A least-squares ap-

proach using a linear combination of predetermined basis

functions has shown to be promising [4]. Gaussian kernels

are popular basis function choices for approximating general

functions because they have certain smoothness properties.

However, typical value functions in RL tasks are predom-

inantly smooth with intrinsic discontinuity [5]. For this

reason, simply employing Gaussian kernels for approximat-

ing value functions tend to produce undesired, non-optimal

results around the discontinuity and affect the overall per-

formance significantly.

To overcome this problem, the paper [6] proposed defin-

ing Gaussian kernels (called geodesic Gaussian kernel) on

graphs induced by MDPs. Since value functions which

contain discontinuity in the Euclidean space are typically

smooth on graphs, geodesic Gaussian kernels could be use-

ful alternatives to the ordinary Gaussian kernels. The pa-

per [6] carried out systematic experiments using artificial

RL tasks and showed that the geodesic Gaussian kernels

significantly outperform existing methods.

In this paper, we apply the geodesic Gaussian kernels

to two realistic and complex RL tasks and evaluate practi-

cal performance. The first RL task is simulated robot arm

reaching with obstacles. Due to the obstacles, it is difficult

to explicitly compute an inverse kinematic model and there

is discontinuity in value functions. Therefore, this task is

an interesting test bed for investigating the behaviour of

geodesic Gaussian kernels. The second is a more challeng-

ing task of mobile robot navigation, which involves high-

dimensional continuous state spaces with strong stochas-

ticity. Through these experiments, we demonstrate that

Contact: Hirotaka Hachiya, 2-12-1-W8-74, O-okayama,

Meguro-ku, Tokyo, 152-8552, Japan

hachiya@sg.cs.titech.ac.jp

sugi@cs.titech.ac.jp

geodesic Gaussian kernels give much better policies with a

smaller number of basis functions than ordinary Gaussian

kernels; thus the use of geodesic Gaussian kernels in least-

squares policy iteration is shown to be a computationally

efficient alternative to existing approaches.

2. Formulation of RL

In this section, we briefly introduce the notation and RL

formulation.

2.1 Markov Decision Processes
Let us consider a Markov decision process (MDP)

(S,A,P,R, γ), where S is a finite set of states, A is a fi-

nite set of actions, P(s′|s, a) : S → [0, 1] is the conditional

probability of making a transition to state s′ if action a is

taken in state s, R(s, a) : S × A × S → R is an imme-

diate reward for taking action a in state s, and γ ∈ [0, 1)

is the discount factor. In this paper, γ is set to 0.9. Let

π(s) : S → A be a deterministic policy which the agent fol-

lows. Let Qπ(s, a) : S×A → R be a state-action value func-

tion for policy π, which indicates the expected discounted

sum of future rewards the agent receives when taking ac-

tion a in state s and following policy π thereafter. Qπ(s, a)

satisfies the Bellman equation:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S
P(s′|s, a)Qπ(s′, π(s′)). (1)

The goal of RL is to obtain a policy which maximizes the

amount of future rewards; the optimal policy π∗(s) is de-

fined as

π∗(s) = argmax
a∈A

Q∗(s, a), (2)

where Q∗(s, a) is the optimal state-action value function

defined by

Q∗(s, a) = max
π

Qπ(s, a). (3)

2.2 Least-Squares Policy Iteration
In practice, direct computation of π∗(s) is often in-

tractable. To overcome this problem, the paper [4] proposed

approximating the state-action value function Qπ(s, a) us-

ing a linear model:

Q̂π(s, a; w) =

k∑
i=1

wiφi(s, a), (4)

1

The 21st Annual Conference of the Japanese Society for Artificial Intelligence, 2007

where k is the number of basis functions which is usually

much smaller than |S| × |A|, w = (w1, w2, . . . , wk)> are

the parameters to be learned, > denotes the transpose, and

{φi(s, a)}k
i=1 are pre-determined basis functions. We as-

sume to have roll-out samples from a sequence of actions:

{(si, ai, ri, s
′
i)}t

i=1, (5)

where the agent experiences a transition from si to s′i by

taking action ai with immediate reward ri. Under the least-

squares policy iteration (LSPI) formulation [4], the param-

eter w is learned so that the Bellman equation (1) is opti-

mally approximated in the least squares sense.

Then, the policy is updated based on the approximated

state-action value function with learned parameter ŵπ as

π(s) ←− argmax
a∈A

Q̂π(s, a; ŵπ). (6)

Approximating the state-action value function and updat-

ing the policy are iteratively carried out until some conver-

gence criterion is met.

3. Geodesic Gaussian Kernels

In the LSPI algorithm, the choice of basis functions

{φi(s, a)}k
i=1 is an open design issue. Gaussian kernels have

traditionally been a popular choice [4, 2], but they can not

approximate discontinuous functions well. To overcome this

problem, the paper [6] has proposed defining Gassian ker-

nels (called geodesic Gaussian kernels) on a graph which

represents the structure of the state space . In this section,

we briefly review the formulation of geodesic Gaussian ker-

nels.

Let G be a graph induced by an MDP, where nodes are

states S and edges are the transitions with non-zero transi-

tion probabilities from one node to another [5]. The edges

can have weights: here we assign the Euclidean distance

between two nodes to the weight. In practice, such a graph

is estimated from samples of a finite length.

Ordinary Gaussian kernels (OGKs) are defined as

K(s, s′) = exp

(
−ED(s, s′)2

2σ2

)
, (7)

where ED(s, s′) are the Euclidean distance between states

s and s′ and σ2 is the variance parameter of the Gaussian

kernel.

Geodesic Gaussian kernels (GGKs) are defined using the

shortest path:

K(s, s′) = exp

(
−SP(s, s′)2

2σ2

)
, (8)

where SP(s, s′) denotes the shortest path from state s to

state s′, which can be efficiently computed using the Dijk-

stra algorithm [1].

The above two types of Gaussian kernels are defined on

the state space S, where s′ is treated as a center of the

kernel. In order to employ the Gaussian kernel in the LSPI

algorithm, it needs to be extended over the state-action

space S × A. A naive way is to just simply ‘copying’ the

Gaussian function over the action space [4, 5]. However this

can cause a ‘shift’ in the Gaussian centers since the state

usually changes when some action is taken. To incorporate

this transition, the paper [6] proposed defining the basis

functions as the expectation of Gaussian functions after the

transition, i.e.,

φi+(j−1)m(s, a) = I(a = a(i))
∑

s′∈S
P(s′|s, a)K(s′, c(j)). (9)

where m is the number of possible actions and I(·) is the

indicator function, i.e., I(a = a(i)) = 1 if a = a(i) otherwise

I(a = a(i)) = 0. The total number k of basis functions be

mp, where p is the number of Gaussian centers.

4. Applications

In this section, we investigate the application of the

GGK-based method to the challenging problems of (simu-

lated) robot arm control and mobile robot navigation tasks

and demonstrate its usefulness.

4.1 Robot Arm Control
We use a simulator of a two-joint robot arm (see Fig.1(a)).

The task is to lead the end effector of the arm to the object

while avoiding the obstacles. Possible actions are to increase

or decrease the angle of each joint (‘shoulder’ and ‘elbow’)

by 5 degrees in the plane. Thus the action space A involves

4 actions and the state space S is the 2-dimensional discrete

space consisting of two joint angles(see Fig.1(b)). We give

a positive reward +1 when the robot’s end effector touches

the object; otherwise the robot receives no immediate re-

ward. In this environment, because of the obstacles, it is

difficult to explicitly compute an inverse kinematic model

and there is discontinuity in value functions. Therefore,

this task is an interesting test bed for investigating the be-

haviour of GGKs.

We collected training samples from 50 series of 1000 ran-

dom arm movements, where the start state is chosen ran-

domly in each trial. The graph induced by the above MDP

consists of 1605 nodes. There are totally 16 goal states

in this environment (see Fig.1(b)), so we put the first 16

Gaussian centers at the goals and the remaining centers are

chosen randomly in the state space. For GGKs, kernel func-

tions are extended over the action space using the shifting

scheme (see Eq.(9)) since the transition is deterministic in

this experiment.

Fig.2 illustrates the value functions approximated using

GGKs and OGKs. The graphs show that GGKs give a nice

smooth surface with obstacle-induced discontinuity sharply

preserved, while OGKs tend to smooth out the discontinu-

ity. This makes a significant difference in avoiding the ob-

stacle: from ‘A’ to ‘B’ in Fig.1(b), the GGK-based value

function results in a trajectory that avoids the obstacle

(see Fig.2(a)). On the other hand, the OGK-based value

function yields a trajectory that tries to move the arm

through the obstacle by following the gradient upward (see

Fig.2(b)), causing the arm to get stuck behind the obstacle.

2

The 21st Annual Conference of the Japanese Society for Artificial Intelligence, 2007

(a) A schematic

A
B

(b) State space

Figure 1: A two-joint robot arm.

−100

0

100

180

0

−180

0

1

2

3

Joint 1 (degree)
Joint 2 (degree)

(a) Geodesic Gaussian kernels

−100

0

100

180

0

−180

0

0.5

1

Joint 1 (degree)
Joint 2 (degree)

(b) Ordinary Gaussian kernels

Figure 2: Approximated value functions.

0 20 40 60 80 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of kernels
F

ra
ct

io
n

of
 s

uc
ce

ss
fu

l t
ria

ls

GGK(5)
GGK(9)
OGK(5)
OGK(9)

Figure 3: Number of successful trials.

Fig.3 summarizes the performance of GGKs and OGKs

measured by the percentage of successful trials averaged

over 30 independent runs. More precisely, in each run, to-

tally 50000 training samples are collected using a differ-

ent random seed, a policy is then computed by the GGK-

or OGK-based LSPI method, and the obtained policy is

tested. This graph shows that GGKs remarkably outper-

form OGKs since the arm can successfully avoid the obsta-

cle.

4.2 Robot Agent Navigation
Next we apply GGKs to a more challenging task of mobile

robot navigation, which involves a high-dimensional and

continuous state space. We employ a Khepera robot (see

Fig.4(a)) equipped with 8 infra-red sensors (‘s1’ to ‘s8’),

each of which produces a scalar value between 0 and 1023.

Therefore, the state space S is 8-dimensional and continu-

ous. The Khepera has two wheels and takes the following

4 defined actions: forward, left-rotation, right-rotation and

backward (i.e., the action space A contains 4 actions). Note

that the sensor values and the wheel speed are stochastic

due to the sensor noise, slip etc.

The goal of the navigation task is to make the Khep-

era explore the environment as much as possible. To this

end, we give a positive reward +1 when the Khepera moves

forward and a negative reward −2 when the Khepera col-

lides with an obstacle. We do not give any reward to the

left/right rotation and backward actions.

We collected training samples from 200 series of 100 ran-

dom movements and constructed a graph by discretizing

the continuous state space using the Self-Organizing Map

(SOM) [3]. The number of nodes (states) in the graph is set

to 696 (equivalent with the SOM map size of 24×29), which

is computed by 5
√

n [8], where n is the number of samples.

The edge weight is set to the Euclidean distance between

two nodes. Fig.4(b) illustrates an example of the obtained

graph structure. For visualization purposes, we projected

the 8-dimensional state space onto a 2-dimensional subspace

and displayed only the edges whose weight is less than 250.

This graph has a notable feature: the nodes around the

region ‘B’ are very sparsely connected to the nodes at ‘C’,

‘D’, and ‘E’. This implies that the geodesic distance from

‘B’ to ‘C’, ‘D’, or ‘E’ is typically larger than the Euclidean

distance.

Since the transition from one state to another is highly

stochastic in the current experiment, we decided to simply

copy the GGK function over the action space. For obtaining

continuous GGKs, we may employ a simple linear interpo-

lation method in general. However, the current experiment

has unique characteristics—at least one of the sensor values

is always zero since the Khepera is never completely sur-

rounded by obstacles. So, we simply add the Euclidean dis-

tance between the current state and its nearest node when

computing kernel values

Fig.5 illustrates an example of actions selected at each

node by the GGK-based and OGK-based policies. We used

100 kernels and set the width to 1000. This shows that there

is a clear difference in the obtained policies at the region

‘C’ (cf, Fig.4(b)); the backward action is taken by the OGK-

3

The 21st Annual Conference of the Japanese Society for Artificial Intelligence, 2007

(a) A schematic

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

1000

(b) State space projected onto a 2-dimensional subspace for visualization.

Figure 4: A khepera robot.

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

1000

↑↑↑↑↑↑↑⊃⊃⊃⊃⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃⊃
⊃⊃

⊃⊃

↑↑↑↑↑↑↑↑⊃⊃⊃⊃
⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃
⊃
⊃
⊃⊃
⊃⊃

⊃⊃

↑↑↑↑↑↑↑↑⊃⊃⊃
⊃⊃

⊃⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃

⊃⊃
⊃↑

⊃⊃

↑↑↑↑↑↑↑↑↑↑
⊃
↑⊃

⊃
⊃
⊃⊃

⊃
⊃
⊃⊃
⊃⊃

↑⊃
⊃⊃ ⊃⊃

↑↑↑↑↑↑↑↑↑↑
↑
↑

↑
⊃

⊃
⊃⊃

↑
⊃

⊃⊃
↑⊃

⊃⊃
⊃⊃⊃⊃

↑↑↑↑↑↑↑↑↑↑
↑
⊃

↑
↑

↑
↑↑

↑
⊃

⊃⊃
⊃↑

⊃⊃
⊃⊃⊃⊃

↑ ↑↑↑↑↑↑↑↑↑
↑
⊃↑

↑

↑

↑↑
↑

↑
⊃⊃
⊃⊃

⊃⊃⊃
⊃⊃⊃

↑↑↑↑↑↑↑↑
↑
↑↑

↑⊃

⊃
↑

↑↑
⊃

↑
⊃

⊃
⊃⊃

⊃⊃⊃
⊃⊃⊃

↑↑↑↑↑
↑↑

↑↑
↑↑

↑↑

↑
↑
⊃⊃
↑

↑
⊃

⊃
⊃⊃ ⊃⊃⊃⊃⊃⊃

↑↑

↑↑↑↑
↑
↑↑

↑
↑
↑

↑

↑
↑

⊃↑
⊃

⊃
⊃

⊃
⊃⊃ ⊃⊃⊃⊃ ⊃⊃

↑
↑

↑
↑↑
↑↑
↑

↑
↑

↑
↑

↑

↑
⊃

⊂
⊂ ↑↑
⊃

⊃
⊃⊃ ⊃⊃⊃⊃

⊃⊃

↑

↑↑
↑↑
↑

↑
↑

↑
↑

↑
↑

↑

↑

↑
↑↑↑↑
⊃

⊃ ⊃
⊃ ⊃⊃ ⊃

⊃
⊃⊃

↑
↑↑↑↑↑
↑
↑

↑
↑

↑
↑

↑

↑

⊂
⊂⊂ ⊂↑
⊃⊃ ⊃⊃ ⊃⊃ ↑

⊃ ⊃↓

↑↑↑ ↑↑ ↑
↑ ↑
↑

↑
↑

↑
↑

↑

⊂ ↑
⊂ ↑↑⊃

⊃ ⊃⊃ ⊃⊃⊃
⊃ ↓↓

↑↑↑ ↑↑ ↑↑
↑

↑
↑

↑
↑

↑
⊂

⊂ ↑
↑ ⊂
↑⊂

⊃ ⊂⊃⊃⊃⊂
⊂ ⊂↓

↑↑↑ ↑↑ ↑↑
↑

↑
↑

↑
↑

⊂
⊂

⊂
↑

↑ ⊂
⊂ ⊂

⊂ ⊂
⊂⊂⊃ ↑⊂ ⊂⊂

↑↑↑ ↑↑↑↑
⊂

↑

↑
↑

↑↑
⊂

↑
↑

⊂
⊂

⊂
⊂

⊂ ⊂
⊂⊂⊂ ⊂⊂ ⊂⊂

↑↑↑↑↑↑↑
↑

↑

↑
↑
↑↑

↑
⊂

↑
↑

⊂
⊂
⊂

⊂⊂
⊂⊂

⊃⊃
↑⊂⊂

↑ ↑↑ ↑↑ ↑↑
↑

↑

↑
↑ ↑ ↑

↑⊂
↑
⊂

⊂
⊂
⊂

⊂↑⊂ ⊂
⊂⊂

↑⊂⊂

↑ ↑↑ ↑↑ ↑⊂
↑

↑
↑

↑ ↑
⊂ ↑

⊂ ↑
⊂

⊂
⊂ ⊂

⊂ ⊂⊂⊂
⊂
↑

⊂ ⊂⊂

↑ ↑↑ ↑↑ ↑⊂
↑

⊂
⊂

⊂ ⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂ ⊂⊂⊂

⊂⊂⊂⊂
⊂⊂⊂

↑ ↑⊂ ⊂⊂ ⊂⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂⊂

⊂⊂⊂⊂⊂⊂⊂⊂

⊂ ⊂⊂ ⊂⊂ ⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂⊂
⊂⊂⊂⊂⊂⊂⊂⊂

⊂ ⊂ ⊂ ⊂⊂ ⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂⊂
⊂⊂

⊂⊂⊂⊂⊂⊂

(a) Geodesic Gaussian kernels

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−400

−200

0

200

400

600

800

1000

↑↑↑↑↑↑↑⊃⊃⊃⊃⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃
⊃⊃
⊃⊃

⊃⊃

↑↑↑↑↑↑↑⊃⊃⊃⊃⊃
⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃
⊃
⊃
⊃⊃
⊃⊃

⊃⊃

↑↑↑↑↑↑↑↑⊃⊃⊃
⊃⊃

⊃⊃
⊃

⊃
⊃

⊃
⊃

⊃
⊃
⊃

⊃⊃
⊃⊃

⊃⊃

↑↑↑↑↑↑↑↑↑↑
⊃
⊃⊃

⊃
⊃
⊃⊃

⊃
⊃
⊃⊃
⊃⊃

⊃⊃
⊃⊃ ⊃⊃

↑↑↑↑↑↑↑↑↑↑
⊃
⊃

⊃
⊃

⊃
⊃⊃

⊃
⊃

⊃⊃
⊃⊃

⊃⊃
⊃⊃⊃⊃

↑↑↑↑↑↑↑↑↑↑
↑
↑

⊃
⊃

⊃
⊃⊃

⊃
⊃

⊃⊃
⊃⊃

⊃⊃
⊃⊃⊃⊃

↑ ↑↑↑↑↑↑↑↑↑
↑
↑↑

↑

⊃

⊃⊃
⊃

⊃
⊃⊃
⊃⊃

⊃⊃⊃
⊃⊃⊃

↑↑↑↑↑↑↑↑
↑
↑↑

↑↑

↑
↑

⊃⊃
⊃

⊃
⊃

⊃
⊃⊃

⊃⊃⊃
⊃⊃⊃

↑↑↑↑↑
↑↑

↑↑
↑↑

↑↑

↑
↑
↑↓
↓

↓
↓

↓
↓↓↓⊃⊃⊃⊃⊃

↑↑

↑↑↑↑
↑
↑↑

↑
↑
↑

↑

↑
↑

↑↓
↓

↓
↓

↓
↓↓↓↓↓⊃ ⊃⊃

↑
↑

↑
↑↑
↑↑
↑

↑
↑

↑
↑

↑

↑
↑

↑
↑↓↓
↓

↓
↓↓↓↓↓↓

⊃⊃

↑

↑↑
↑↑
↑

↑
↑

↑
↑

↑
↑

↑

↑

↑
↑↑↓↓
↓

↓↓
↓↓↓↓

↓
⊃⊃

↑
↑↑↑↑↑
↑
↑

↑
↑

↑
↑

↑

↑

↑
↑↑ ↓↓
↓↓↓↓↓↓↓

↓ ↓↓

↑↑↑ ↑↑ ↑
↑ ↑
↑

↑
↑

↑
↑

↑

↑ ↑
↓ ↓↓↓

↓ ↓↓↓↓↓
↓↓↓

↑↑↑ ↑↑ ↑↑
↑

↑
↑

↑
↑

↑
↑

↑ ↓
↓ ↓
↓↓

↓ ↓↓↓↓↓
↓↓↓

↑↑↑ ↑↑ ↑↑
↑

↑
↑

↑
↑

↑
↑

↑
↓

↓ ↓
↓↓

↓↓
↓↓↓↓↓ ↓↓

↑↑↑ ↑↑↑↑
↑

↑

↑
↑

↑↑
↓

↓
⊂

⊂
⊂

⊂
⊂

↓↓
↓↓↓ ↓↓↓↓

↑↑↑↑↑↑↑
↑

↑

↑
↑
⊂⊂

⊂
⊂

⊂
⊂

⊂
⊂
⊂

⊂⊂
↓↓

↓↓
↓↓↓

↑ ↑↑ ↑↑ ↑↑
↑

↑

⊂
⊂ ⊂ ⊂

⊂⊂
⊂
⊂

⊂
⊂
⊂

⊂⊂⊂ ⊂
↓↓

↓↓↓

↑ ↑↑ ↑↑ ⊂⊂
⊂

⊂
⊂

⊂ ⊂
⊂ ⊂

⊂ ⊂
⊂

⊂
⊂ ⊂

⊂ ⊂⊂⊂
⊂
⊂

↓⊂↓

↑ ⊂↑ ⊂⊂ ⊂⊂
⊂

⊂
⊂

⊂ ⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂ ⊂⊂⊂

⊂⊂⊂⊂
⊂⊂⊂

⊂⊂⊂ ⊂⊂ ⊂⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂

⊂
⊂⊂

⊂⊂⊂⊂⊂⊂⊂⊂

⊂ ⊂⊂ ⊂⊂ ⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂⊂
⊂⊂⊂⊂⊂⊂⊂⊂

⊂ ⊂ ⊂ ⊂⊂ ⊂⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂
⊂⊂
⊂⊂

⊂⊂⊂⊂⊂⊂

(b) Ordinary Gaussian kernels

Figure 5: Examples of obtained policies. The symbols ‘↑’, ’↓’, ‘⊂’, and ‘⊃’

indicate forward, backward, left rotation, and right rotation actions.

0 10 20 30 40 50 60 70 80 90 100
40

45

50

55

60

65

70

75

80

85

Number of kernels

A
ve

ra
ge

d
to

ta
l r

ew
ar

ds

GGK(200)
GGK(1000)
OGK(200)
OGK(1000)

Figure 6: Average amount of exploration.

based policy while the left/right rotation are chosen by the

GGK-based policy. This causes a significant difference in

the performance, i.e., the OGK-based policy ends up with

repeating going forward and backward in front of the same

obstacle while the GGK-based policy can successfully avoid

the obstacle.

For the performance evaluation, we let the Khepera run

from fixed starting position and take 150 steps following

the obtained policy. We compute the sum of rewards. If

the Khepera collides with an obstacle before 150 steps, we

stop the evaluation. The mean test performance over 20

independent runs is depicted in Fig.6 as a function of the

number of kernels. Fig.6 shows that GGKs significantly

outperform OGKs, demonstrating that GGKs are promis-

ing even in the challenging setting with a high-dimensional

continuous state space.

5. Conclusion

We demonstrated the practical usefulness of the geodesic

Gaussian for challenging applications: both the robot

arm reaching and the Khepera exploration experiments

showed quantitative improvements as well as intuitive, in-

terpretable behavioral advantages evident from the experi-

ments.

We thank Christopher Towel and Sethu Vijayakumar for

their comments. We acknowledge financial support from

MEXT (Grant-in-Aid for Young Scientists 17700142 and

Grant-in-Aid for Scientific Research (B) 18300057), the

Okawa Foundation, and EU Erasmus Mundus Scholarship.

References

[1] E. W. Dijkstra. A note on two problems in connexion

with graphs. pages 269–271, 1959.

[2] Y. Engel, S. Mannor, and R. Meir. Reinforcement learn-

ing with gaussian processes. Bonn, Germany, 2005.

[3] T. Kohonen. Self-Organizing Maps. Springer, Berlin.

[4] M. G. Lagoudakis and R. Parr. Least-squares pol-

icy iteration. Journal of Machine Learning Research,

(4):1107–1149, 2003.

[5] S. Mahadevan. Proto-value functions: Developmental

reinforcement learning. Bonn, Germany, 2005.

[6] M. Sugiyama, H. Hachiya, C. Towell, and S. Vijayaku-

mar. Geodesic Gaussian kernels for value function

approximation. In Proceedings of 2006 Workshop on

Information-Based Induction Sciences, pages 316–321,

Osaka, Japan, Oct. 31–Nov. 2 2006.

[7] Richard S. Sutton and Andrew G. Barto. Reinforcement

Learning: An Introduction. The MIT Press, 1998.

[8] J. Himberg Vesant, E. Alhoniemi, and J. Parhankan-

gas. Som toolbox for matlab 5. Helsinki University of

Technology, 2000.

4

