
An Online Self-constructive Locally Updated

Normalized Gaussian Network with Localized Splitting

Jana Backhus Ichigaku Takigawa Hideyuki Imai Mineichi Kudo Masanori Sugimoto

Department of Computer Science and Information Technology,
Graduate School of Information Science and Technology, Hokkaido University

In sequential learning schemes, dynamic model adaptation is preferable over static model size selection. In
this paper, we apply an incremental model selection approach to a locally updated Normalized Gaussian network
(NGnet), and improve it for better robustness against negative interference. Model adaptation is enabled by
applying some unit manipulation mechanisms, including a produce, delete and split manipulation, to increase or
decrease model complexity. Here, split uses a static threshold for its manipulation, and we suggest a dynamic
thresholding approach that selects a threshold according to local information. In our experiments, the NGnet
is tested for a function approximation task with balanced and imbalanced sample distributions. We compared
local thresholding to static and dynamic global thresholding, and results show that localized thresholding improves
performance for both test cases, and especially for imbalanced sample data. Therefore, localized splitting is
preferable especially in test cases where negative interference is likely.

1. Introduction

In sequential learning schemes, only one data sample is

observable at a time and prior knowledge about the learn-

ing environment is limited. These limitations complicate

the learning of neural networks in sequential schemes and

the problem of negative interference arises. Negative in-

terference refers to the unwanted forgetting of previously

learned information in favor of newly arriving data. The

grade of negative interference is a consequence of the dis-

tributed nature of the representing model. Local models

suffer less from it and are therefore preferable in sequential

learning schemes.

A Normalized Gaussian Network (NGnet) is a feed-

forward three layer neural network, where the hidden layer

consists of local linear regression units. These units parti-

tion the input space softly, and the output is linearly ap-

proximated within each partition. Recently, a local update

approach was proposed for the parameter estimation of the

NGnet [Celaya 15]. We will call it hereafter locally weighted

NGnet (LWNGnet). Through its local characteristics, the

LWNGnet is suitable for the application to sequential learn-

ing schemes.

Model complexity selection is another problem that arises

during network model learning. A complexity can be se-

lected statically in exhaustive trial-and-error studies or dy-

namically during learning. Only static model selection was

considered in [Celaya 15], but dynamic selection is possible

by adapting formerly proposed unit manipulation mech-

anisms for an NGnet with global weighting (GWNGnet)

[Sato 00]. The unit manipulation mechanisms include a

produce, a delete and a split mechanism. We apply them

Contact: Jana Backhus, Department of Computer Science

and Information Technology, Graduate School of Infor-

mation Science and Technology, Hokkaido University,

Kita 14 Nishi 9, Kita-ku, Sapporo, 060- 0814, Japan,
jana@main.ist.hokudai.ac.jp

self-constructively so that the network model is built from

scratch during learning, starting with zero units.

The split mechanism employs a threshold parameter for

its split decision which is globally set to the same value for

the whole input space and is static over the whole learning

process. In this paper, we discuss the localization of the

split threshold by suggesting a new localized decision pro-

cess. We test our proposed method for a function approx-

imation task with balanced and imbalanced sample data

distributions. Experiments show that the localized deci-

sion process is able to improve performance compared with

the former static threshold, especially when the data dis-

tribution is imbalanced. Additionally, we compare the self-

constructive LWNGnet to a self-constructively built version

of the GWNGnet. The results show that the LWNGnet is

performing better in both test cases.

2. Normalized Gaussian Network

The Normalized Gaussian Network (NGnet) is a univer-

sal function approximator that was first proposed by Moody

and Darken in [Moody 89]. Generally, the NGnet approx-

imates a mapping f : IRN → IRD from an N -dimensional

input space to a D-dimensional output space, where an in-

put vector x is transformed to an output vector y with

y =

M∑
i=1

Ni(x)W̃ix̃. (1)

M is the number of units, x̃ is an (N+1)-dimensional input

vector with x̃′ ≡ (x′, 1), and W̃i is aD×(N+1)-dimensional

linear regression matrix. Normalized Gaussian functions Ni

are used as activation functions, and Ni is the normalized

output of the i-th multivariate Gaussian probability density

function (pdf). The model softly partitions the input space

into local units i.

1

The 30th Annual Conference of the Japanese Society for Artificial Intelligence, 2016

3E4-3

2.1 Parameter Estimation
Sato and Ishii formerly suggested an online Expectation-

Maximization (EM) algorithm for parameter estimation

[Sato 00]. The EM algorithm interprets the NGnet stochas-

tically so that the network model is defined by a probabil-

ity distribution P (x, y, i|θ). Here, θ ≡ {µi,Σi, σ
2
i , W̃i|i =

1, ...,M} is the set of model parameters which have to be

estimated, where µi and Σi are the center and covariance

matrix of the i-th Gaussian pdf, and σ2
i (t) is an output vari-

ance for the i-th unit. The parameters are updated with the

online EM-algorithm for every time step t:

µi(t) = ⟨⟨x⟩⟩i(t)/⟨⟨1⟩⟩i(t) (2)

Σ−1
i (t) = [⟨⟨xx′⟩⟩i(t)/⟨⟨1⟩⟩i(t)− µi(t)µ

′
i(t)]

−1 (3)

W̃i(t) = ⟨⟨yx̃′⟩⟩i(t)[⟨⟨x̃x̃
′⟩⟩i(t)]

−1 (4)

σ2
i (t) =

[⟨⟨|y|2⟩⟩i(t)− Tr(W̃i(t)⟨⟨x̃y′⟩⟩i(t))]
D⟨⟨1⟩⟩i(t)

(5)

These updates include weighted accumulators of the form

⟨⟨·⟩⟩i that are calculated in a step-wise equation:

⟨⟨f(x, y)⟩⟩i(t) = Λ(t)⟨⟨f(x, y)⟩⟩i(t−1)+Ω(t)f(x(t), y(t)) (6)

Here, Λ(t) has the effect of a forgetting factor that lets old

training results be slowly forgotten, while Ω(t) is an update

factor that decides about how much of the newly received

data is learned. For the local update strategy [Celaya 15]

that is used by the LWNGnet, the forgetting effect is local-

ized to make learning robuster against negative interference.

The local forgetting ensures that only as much old informa-

tion is forgotten as new information is received for a unit

i. The forgetting factor is then set to Λ(t) = λ(t)Pi(t),

and the update factor is Ω(t) = 1−λ(t)Pi(t)

1−λ(t)
, with a dis-

count factor λ(t) and the i-th unit’s posterior probability

Pi(t) = P (i|x(t), y(t), θ(t− 1)).

The discount factor λ(t) has to be chosen so that λ → 1

when t → ∞ for fullfilling the Robbins-Monro condition

for convergence of stochastic approximations. λ(t) plays an

important role in discarding the effect of old learning results

which were employed to an earlier inaccurate estimator.

2.2 Network Model Selection
Model complexity selection is another arising problem

when applying NGnets to learning problems. The complex-

ity plays an important role in the NGnet’s learning perfor-

mance and there are two possibilities to choose it. The first

possibility is a static complexity set by the user, but a good

decision needs excessive trial-and-error studies. The alter-

native is a dynamic selection of the network model during

learning. In other words, the model complexity is changed

dynamically with some manipulation mechanisms that in-

crease or reduce it. Here, some manipulation mechanisms

are adapted from [Sato 00] to make the LWNGnet’s com-

plexity dynamic. The mechanisms include a produce, delete

and split mechanism. They are applied self-constructively,

referring to a model build-up from scratch during the learn-

ing process. Self-construction possesses the advantage that

the initialization problem is mostly avoided as the network

model starts its training with zero units.

2.2.1 Produce

The probability distribution P (x(t), y(t)|θ(t − 1)) indi-

cates how likely the current model parameters θ(t− 1) can

estimate the newly received data sample (x(t), y(t)). When

the probability is smaller than a certain threshold TProduce,

a new unit is created accordingly with the produce mecha-

nism in [Sato 00].

2.2.2 Delete

The weighted accumulator ⟨⟨1⟩⟩i(t) is an indicator for how

much the i-th unit has accounted for the data until the

current time step t. In the LWNGnet, ⟨⟨1⟩⟩i(t) is a weighted

sum which is not normalized and therefore cannot be used

directly as a reference. A local unit update counter cupdate
is introduced as a normalizer. It is incremented by one at

every time step where the update factor is computationally

Ω(t) > 0. A unit is deleted if ⟨⟨1⟩⟩i(t)/cupdate < TDelete,

where TDelete is a delete threshold.

2.2.3 Split

The output variance σ2
i (t) is representing the accumu-

lated squared error between the i-th unit’s predictions and

the real outputs. High variance values are related to the

unit being in charge of a too large partition of the input

space. Splitting is applied to a unit i with the split mecha-

nism in [Sato 00] when σ2
i (t) > TSplit, with threshold TSplit.

3. Localization of Split

The split mechanism in 2.2.3 uses a globally defined static

threshold that has to be set by the user before learning. But

a threshold should be set in relation to the likely accumula-

tion of error which depends among others on the noisiness

of the data. An alternative approach compares the output

variance of a unit to the output variances of the other units

in the network. This can be done globally, with all units

included in the comparison, or locally. The global approach

may be problematic for different learning situations in dif-

ferent parts of the input space, as it is e.g. the case for

imbalanced sampling distributions.

A local approach is suggested to cope with these learning

situations. Local means that only a few units near unit i

are included in its threshold evaluation. Then, the local-

ity helps to consider only near neighbors which are more

likely located in a similar learning situation. The flow of

the localized threshold decision process is described in the

following.

1: Number of nearest neighbors: NoNN = M/DivNN

2: for all units i do

3: Find the NoNN nearest neighbors of unit i

4: σ2
NNmax = max{σ2

j , j = 1, 2, · · · , NoNN}
5: Calculate split threshold:

TSplit = σ2
NNmax ·Multiplier

6: if σ2
i > TSplit then

7: Add unit to splitting candidates VSplit

8: end if

9: end for

10: Split all candidates in VSplit

Here, DivNN and Multiplier are two variables that have to

be set by the user. DivNN is regulating the number of near-

2

Table 1: Experiment with Balanced Data

Method
b=50 b=150

NMSE Net. Size NMSE Net. Size

GW 0.0268 50.52 0.0197 45.82

LW Static 0.0096 47.76 0.0131 46.52

LW DivNN=1 0.0094 48.46 0.0129 47.08

LW DivNN=6 0.0093 50.44 0.0128 49.18

est neighbors involved in the splitting decision in relation

to the overall model complexity M . On the other hand,

Multiplier regulates when a unit is considered too error-

prone compared with its neighbors and has to be split. The

nearest neighbors are found based on their distance from

unit i. The NoNN units with the shortest distances are

considered as nearest neighbors and the Euclidean distance

is used for distance calculation.

4. Experiments

For the experiments, we apply the LWNGnet to the

Schaal or cross function approximation task which is com-

monly used to test learning performance (e.g. [Celaya 15],

[Sato 00]). The function has the input dimension N = 2

and is defined by:

g(x1, x2) = max{e−10x2
1 , e−50x2

2 , 1.25e−5(x2
1+x2

2)}. (7)

Additionally, the function output g adds a normally dis-

tributed random noise ϵ(t) ∼ N(0, 0.01) so that y(t) =

g(x1(t), x2(t)) + ϵ(t) is obtained as the noisy data sample

output. The function approximation task is tested with

balanced and imbalanced sampling of 10.000 training data

samples. For the balanced test case, the sample data is in-

dependent and identically distributed (i.i.d) over the whole

input space (−1 ≤ x1, x2 ≤ 1). The imbalanced test case

uses non-identically distributed sample data. 95% of the

data samples are extracted from a sub-region of the input

domain with (0 ≤ x1, x2 ≤ 0.25), while the remaining 5%

of the data are i.i.d in (−1 ≤ x1, x2 ≤ 1).

Four different methods are compared in our experi-

ments. The first method is GW, the conventional online

NGnet with globally weighted forgetting [Sato 00]. It is

applied self-constructively and uses the static split thresh-

old. The second to forth method uses the LWNGnet, where

LWStatic uses the static split threshold and the other two

use the split decision process described in the 3. Chap-

ter. For LW DivNN=1, the number of nearest neighbors is

equal to the whole input space. In other words, this method

applies the decision process globally, while LW DivNN=6

uses only some nearest neighbors for its locally oriented de-

cision. Thresholds were chosen so as to have approximately

similar behavior in all methods for better comparison. The

discount factor is updated with λ(t) = 1 − 0.99
0.01t+b

depen-

dent on time step t and a variable b. We will cover two

different values of b (b = 50, b = 150) in our experiments.

The learning performance is evaluated with the Normalized

Mean Square Error (NMSE) for all methods.

Table 2: Experiment with Imbalanced Data

Method
b=50 b=150

NMSE Net. Size NMSE Net. Size

GW 0.4591 41.42 0.3628 37.34

LW Static 0.0663 66.92 0.0674 67.42

LW DivNN=1 0.0664 72.26 0.0662 71.96

LW DivNN=6 0.0625 71.1 0.0656 69

Experimental results for the balanced case are presented

in Table 1. The results show similar performance for all LW

methods, while they all perform better than GW. A differ-

ent picture is drawn for the second experiment with imbal-

anced data. The experimental results are presented in Ta-

ble 2. Again, the LW methods outperform GW. This time,

there is an even bigger difference in performance and also in

model complexity which is related to the different learning

approaches with globally and locally weighted forgetting.

GW forgets old information based on a global time-based

forgetting factor, making it difficult to achieve good perfor-

mance when sample data is imbalanced. This was also dis-

cussed for static model complexity in [Celaya 15]. Among

the LW methods, the local threshold method LW DivNN=6

shows the best performance. The performance gap is bigger

than for the balanced data and emphasizes the advantage of

the local method. Overall, the local split decision performs

best out of the compared methods.

5. Conclusion

In this paper, we suggested a localized threshold deci-

sion for a split unit manipulation mechanism. It is applied

together with other manipulations for dynamic model se-

lection of the LWNGnet. The proposed approach is tested

for a function approximation task with two different cases

where the sample data distribution is balanced and imbal-

anced. Our experimental results show that the localized

threshold decision helped to improve learning performance,

especially for the imbalanced data case. The LWNGnet

was also compared with an older version of the NGnet and

showed greater stability in learning performance. Possible

future works include the application of the proposed ap-

proach to real world systems and the automatisation of the

unit manipulation threshold parameter selection.

References

[Celaya 15] Celaya, E., Agostini, A.: On-line EM with

Weight-Based Forgetting. Neural Comput. 27, no.5,

1142–1157 (2015)

[Moody 89] Moody, J., Darken, C. J.: Fast learning in net-

works of locally-tuned processing units. Neural Com-

put. 1, no.2, 281–294 (1989)

[Sato 00] Sato, M., Ishii, S.: On-line EM algorithm for

the normalized Gaussian network. Neural Comput. 12,

no.2, 407–432 (2000)

3

