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Despite the popularity of RNNs such as LSTM and GRU, there was little evidence that confirmed their per-
formance. We tried to investigate to reveal underlying processes and conditions to deal with such of them. The
meanings of multi-layered RNNs might also be possible based on these findings as well.

1. Introduction

Long Short-Term Memory (LSTM)[Hochreiter 97], have

recently emerged as an effective model in a wide variety

of applications that involve sequential data. These in-

clude language modeling [Mikolov 10], handwriting recogni-

tion and generation [Graves 13a, Graves 13b, Graves 12],

machine translation [Sutskever 14, Bahdanau 15], speech

recognition [Graves 13b], video analysis [Donahue 15] and

image captioning [Vinyals 15, Karpathy 15a].

A few recent ablation studies analyzed the effects on per-

formance as various gates and connections are removed Gr-

eff et al [Greff 15]; Chung et al. [Chung 14]. However, while

this analysis illuminates the performance-critical pieces of

the architecture, it is still limited to examining the effects

only on the global level of the final test set perplexity alone.

Similarly, an often cited advantage of the LSTMarchitec-

ture is that it can store and retrieve information over long

time scales using its gating mechanisms, and this ability has

been carefully studied in toy settings Hochreiter & Schmid-

huber [Hochreiter 97]. However, it is not immediately clear

that similar mechanisms can be effectively discovered and

utilized by these networks in real-world data, and with the

common use of simple stochastic gradient descent and trun-

cated backpropagation through time.

2. Overview of LSTM

As depicted at Fig. 1, LSTMcan be described as the

input signals xt at time t, the output signals ot, the forget

gate f t, and the output signal yt, the memory cell ct, then

we can get the following:

it = σ (Wxixt +Whiyt−1 + bi) , (1)

ft = σ (Wxfxt +Whfyt−1 + bf ) , (2)

ot = σ (Wxoxt +Whoyt−1 + bo) , (3)

gt = ϕ (Wxcxt +Whcyt−1 + bc) , (4)

ct = ft ⊙ ct−1 + it ⊙ gt, (5)

ht = ot ⊙ ϕ (ct) (6)
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2. Vanilla LSTM
The LSTM architecture most commonly used in litera-
ture was originally described by Graves & Schmidhuber
(2005).1 We refer to it as vanilla LSTM and use it as a
reference for comparison of all the variants. The vanilla
LSTM incorporates changes by Gers et al. (1999) and Gers
& Schmidhuber (2000) into the original LSTM (Hochreiter
& Schmidhuber, 1997) and uses full gradient training. Sec-
tion 3 provides descriptions of these major LSTM changes.

A schematic of the vanilla LSTM block can be seen in Fig-
ure 1. It features three gates (input, forget and output),
block input, a single cell (the Constant Error Carousel),
an output activation function, and peephole connections.
The output of the block is recurrently connected back to
the block input and all of the gates.

The vector formulas for a vanilla LSTM layer forward
pass are given below. The corresponding Back-Propagation
Through Time (BPTT) formulas can be found in supple-

1But note that some studies omit peephole connections.

the

are

zt = g(Wzx
t +Rzy

t−1 + bz) block input

it = σ(Wix
t +Riy

t−1 + pi � ct−1 + bi) input gate

f t = σ(Wfx
t +Rfy

t−1 + pf � ct−1 + bf) forget gate

ct = it � zt + f t � ct−1 cell state

ot = σ(Wox
t +Roy

t−1 + po � ct + bo) output gate

yt = ot � h(ct) block output

3. History of LSTM
3.1. Original Formulation

This initial version of the LSTM block (Hochreiter &
Schmidhuber, 1995; 1997) included (possibly multiple)
cells, input and output gates, but no forget gate and no
peephole connections. The output gate, unit biases, or input
activation function were omitted for certain experiments.
Training was done using a mixture of Real Time Recur-
rent Learning (RTRL) and Backpropogation Through Time
(BPTT). Only the gradient of the cell was propagated back
through time, and the gradient for the other recurrent con-
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図 1: Shematic Description of LSTM

3. Model proposed

Fig. 2 indicates a summarized schema of models pro-

posed. The softmax gate model (left) can be regarded

as a competiton among inputs. A LSTM cell has three

diffrent kinds of inputs shown in Figure. 1. Those are feed-

forward, recurrent, and peephole inputs. Since these inputs

orginate from different sources, they might play different

roles and/or tendencies on the behavior of the LSTMcell.

Therefore, the softmax gate model would behave as a rec-

tifier among them.

The cascaded gates model, on the other hand, can be re-

graded as a coopeartion among gates. The output functions

followed by these gates would be posutulated as sigmoid

functions, 0 ≤ σ (x) ≤ 1, these gates would behave like an

OR–logic gate. When one of gates was closed, the total

output would be inhibited. The cascaded gates model also

have an advantage that there is no additonal parameters.

When we tried to compare these models with LSTM,

GRU, and Recurrent Neural Networks, we could evaluate

roles of gates or different types of inputs. This would be pos-

sible for us to evaluate roles of diffrent inputs adequately.

4. Experiment

Karpathy and Fei-Fei Li [Karpathy 15b] chose to use Leo

Tolstoy’s War and Peace (WP) novel, which consists of
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図 2: models proposed. A softmax model(left) and a cas-

caded gates model(right)

3,258,246 characters of almost entirely English text with

minimal markup, and at the other end of the spectrum the

source code of the Linux Kernel (LK).

Karpathy and Li first trained several Recurrent Neural

Networksmodels to support further analysis and to com-

pare their performance in a controlled setting. In par-

ticular, they trained models in the cross product of type

(LSTM/Recurrent Neural Networks/GRU), number of lay-

ers (1/2/3), number of parameters (4 settings), and both

datasets (WP/KL). For a 1-layer LSTMthey used hid-

den size vectors of 64,128,256, and 512 cells, which with

their character vocabulary sizes translates to approximately

50 K, 130 K, 400 K, and 1.3 M parameters respectively. The

sizes of hidden layers of the other models were carefully cho-

sen so that the total number of parameters in each case is as

close as possible to these 4 settings. We could follow their

settings as well. Further analysis would be required.
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