
次数混合パターンに基づく世界 42都市道路網の類似構造分析
Analyzing Similarity Structure of Spatial Networks

Based on Degree Mixing Patterns on 42 cities of the world

アリフ マウラナ∗1

Arief Maulana

斉藤 和巳∗1

Kazumi SAITO

池田 哲夫∗1

Tetsuo IKEDA

湯瀬 裕昭∗1

Hiroaki YUZE

渡邉 貴之∗1

Takayuki WATANABE

大久保 誠也∗1

Seiya OKUBO

武藤 伸明∗1

Nobuaki MUTO

∗1静岡県立大学大学院 経営情報イノベーション研究科
Graduate School of Management and Information of Innovation, University of Shizuoka

We address a problem of classifying and characterizing spatial networks in terms of local connection patterns
of node degrees, by especially focusing on the property that the maximum node degrees of these networks are
restricted to relatively small numbers. For this purpose, we extend our previous methods by introducing a new
measure to identify characteristic discriminative patterns. In our expanded experiments using spatial networks con-
structed from urban streets of 42 cities, we confirmed that the identified discriminative patterns play a substantially
important role to interpret regional characteristics of these cities.

1. Introduction

Studies of the structure and functions of large complex

networks have attracted a great deal of attention in many

different fields such as sociology, biology, physics and com-

puter science [Newman 03]. As a particular class, we focus

on spatial networks embedded in the real space, like ur-

ban streets, whose nodes occupy a precise position in two

or three-dimensional Euclidean space, and whose links are

real physical connections [Crucitti 06].

In this paper, we address a problem of classifying and

characterizing spatial networks in terms of local connection

patterns of node degrees, by especially focusing on the prop-

erty that the maximum node degrees of these networks are

restricted to relatively small numbers. Such characteristic

connection patterns that appear frequently in some net-

works can be regarded as their main building blocks, just

like network motifs analyses [Milo 02]. In this paper, we

mainly consider spatial networks constructed from urban

streets by mapping the intersections of streets into nodes

and the streets between the nodes into links, although our

approach is potentially applicable to a wider range of spatial

networks.

In order to analyze given spatial networks in terms of

local connection patterns of node degrees, we have pro-

posed two methods referred to as the bi- and tri-mixing

methods [Maulana 16]. More specifically, we first enumer-

ate and count the combinations of node degrees with re-

spect to connected pair or triple nodes for each of given

networks, just like network motifs in [Milo 02]. Second, we

calculate feature vectors of these networks expressing which

mixing pattern appears with a significantly high (or law)

frequency, just like computation of assortative mixing coef-

ficients [Newman 02]. Finally, we construct a dendrogram

of these networks based on a cosine similarity between these

feature vectors [Ward 63].
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In this paper, we extend our previous methods by intro-

ducing a new measure to identify characteristic discrimina-

tive patterns. In our expanded experiments using spatial

networks constructed from urban streets of 42 cities, we

confirm that the identified discriminative patterns play a

substantially important role to interpret regional charac-

teristics of these cities.

2. Proposed Method

In this section, for the sake of readers’ convenience, we

first revisit our previous methods referred to as the bi- and

tri-mixing methods [Maulana 16]. Then, we propose a new

measure to identify characteristic discriminative patterns.

2.1 Bi- and tri-mixing methods
Let G = (V, E) be a given spatial network, where V =

{u, v, w, · · ·} and E = {(u, v), · · ·} mean sets of nodes and

links, respectively. In this paper, we only consider undi-

rected networks such that (u, v) ∈ E implies (v, u) ∈ E ,

but we can straightforwardly extend our approach to deal

with directional networks. For each node u ∈ V, we denote

its degree by r(u). Then, we can consider a degree mixing

matrix C(2) whose i-jth element c(i, j) is calculated by

c(i, j) = |{(u, v) ∈ E | r(u) = i, r(v) = j}|,

where |A| means a number of elements in a set A. By setting

a marginal probability defined as p(i) =
∑

j
c(i, j)/|E| for

each degree i, we can calculate the expected value for the

i-jth element of C as |E|p(i)p(j) after |E| independent trials

assuming a binomial distribution. Thus, we can obtain the

following Z score z(i, j) with respect to the observed value

c(i, j),

z(i, j) =
c(i, j) − |E|p(i)p(j)√

|E|p(i)p(j)(1 − p(i)p(j))
.

Evidently, when z(i, j) is large (or small), we can conjecture

that there exist a significantly large (or small) number of
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links between nodes with degrees i and j. In the bi-mixing

method, we calculate a feature vector x(2) from the network

by suitably arranging each Z score z(i, j) such that i ≤ j,

i.e., x(2) = (z(1, 1), z(1, 2), · · ·)T , where aT means a trans-

posed vector of a. Recall that since the maximum node

degree of spatial networks is restricted to relatively small

numbers, the dimensionality of the feature vector x(2) does

not become too large.

Next, we explain the tri-mixing method which utilizes

the connected triple nodes, just like network motifs analy-

ses based on triad patterns [Milo 02], instead of connected

pairs. Let F be the set of the connected triples defined by

F = {(u, v, w) | (u, v) ∈ E , (v, w) ∈ E}. Then, we can con-

sider a three-dimensional array C(3) whose i-j-kth element

c(i, j, k) is calculated by

c(i, j, k) = |{(u, v, w) ∈ F | r(u) = i, r(v) = j, r(w) = k}|.

Thus, by setting a marginal probability defined as p(i) =∑
j,k

c(i, j, k)/|F| for each degree i, we can also obtain the

following Z score z(i, j, k) with respect to the observed value

c(i, j, k),

z(i, j, k) =
c(i, j, k) − |F|p(i)p(j)p(k)√

|F|p(i)p(j)p(k)(1 − p(i)p(j)p(k))
.

Again, we calculate a feature vector x(3) from the network

by arranging each Z score z(i, j, k) such that i ≤ k and

j ≥ 2, i.e., x(3) = (z(1, 2, 1), z(1, 2, 2), · · ·)T .

Let G = {G1, · · · , GN} be a set of given networks;

then we can calculate a normalized feature vector y
(h)
n =

x
(h)
n /||x(h)

n || from each network Gn based on connected pairs

or triples, where h ∈ {2, 3}. Here, ||x|| means the standard

L2 norm defined by ||x|| =
√

xT x. Then by using the fol-

lowing dissimilarity measure based on a cosine similarity

between these feature vectors,

d(h)(Gm, Gn) =

√
1 − (y

(h)
m )T y

(h)
n .

we can construct a dendrogram of these networks based on

Ward’s minimum variance method [Ward 63]. Finally, by

using an adequate cut-off point, we can classify the set of

networks G into S groups denoted by {G1, · · · ,Gs, · · · ,GS}

2.2 Discriminative pattern identification
Let lp(h) be a local mixing pattern defined by lp(2) = i-

j and lp(3) = i-j-k for h = 2 and 3, respectively. Now,

with respect to a local pattern lp(h), we can calculate the

difference of the average feature value over group Gs from

the average over G as follows:

δ(lp(h),Gs) =
1

|Gs|
∑
n∈Gs

y(h)
n (lp(h))− 1

|G|
∑
n∈G

y(h)
n (lp(h)) (1)

Thus, we can calculate the deviation of the difference

δ(lp(h),Gs) for each local pattern lp(h) as follows:

∆(lp(h)) =
∑
s∈S

∑
t∈S

(δ(lp(h),Gs) − δ(lp(h),Gs))
2 (2)

Table 1: Basic statistics as network.

No Cont.City Name V E No Cont.City Name V E
1 AF Accra 49420 57354 22 EU London 3022742 3266643

2 EU Amsterdam 628606 724497 23 NA Los Angeles 2736534 2959818

3 EU Barcelona 352243 386908 24 WA Mecca 44818 52262

4 EU Berlin 1587916 1775479 25 SA Mexico 527929 632761

5 EU Bologna 267433 286126 26 EU Munich 373660 434936

6 SA Brasilia 201969 244748 27 AF Nairobi 115447 123497

7 SA Buenos Aires 496813 665626 28 WA New Delhi 289725 341004

8 AF Cairo 202934 232834 29 SA New York 1305256 1454084

9 AU Canberra 317425 344936 30 EA Okinawa 295178 319716

10 NA Washington DC 119352 133336 31 SA Panama 56341 61831

11 WA Dubai 828468 920915 32 EU Paris 1486406 1654543

12 WA Hong Kong 1039557 1113520 33 NA Richmond 375390 398417

13 NA Houston 1371412 1516435 34 EU Rome 545411 593206

14 EU Istanbul 656041 760031 35 NA San Francisco 502051 551028

15 EA Jakarta 358610 403490 36 EA Seoul 851584 917112

16 WA Jerusalem 163105 172776 37 EA Singapore 311928 348560

17 AF Johannesburg 361192 421997 38 AU Sydney 585675 638197

18 EA Kathmandu 1007859 1020498 39 EA Tokyo 6571077 7312007

19 EA Kolkata 301891 322059 40 EU Venice 7359358 8632841

20 SA Lima 240066 298826 41 EU Vienna 9195477 10456807

21 EU Lisbon 774922 832978 42 EU Zurich 613848 670858

where S = {1, · · · , S}. In this paper, we propose to evalu-

ate each local pattern lp(h) by ∆(lp(h)) and to identify those

pattern with large values as some candidates of discrimina-

tive local patterns.

3. Experiments

We used a dataset of OSM (OpenStreetMap) obtained

from Metro Extracts∗1. In order to evaluate the reliability

and consistency of our proposed methods we performed our

experiments by newly adding 25 cities for our former exper-

iments using 17 cities [Maulana 16], i.e., the total number

of cities is 42.

3.1 Dataset
From the OSM dataset of each city, we extracted all high-

ways and all nodes, and constructed each spatial network

by mapping the ends, intersections and curve-fitting-points

of streets into nodes and the streets between the nodes into

links. Table 1 shows the basic statistics of the networks

for the 42 cities. where each continent of North America,

South America, Europe, East-Asia, West-Asia Africa, and

Australia is abbreviated by NA, SA, EU, EA, WA, AF,

and AU. We can see that the numbers of nodes and links

(|V|, |E|) are substantially different from each other, and

the covered regions spread worldwide.

3.2 Bi-Mixing
Figure 1 shows the dendrogram constructed by our bi-

mixing method, where the total number of mixing patterns

from 1-1 to 5-5 amounts to 15. In this figure, the cities of

NA, SA, EU, EA, WA, AF, and AU are depicted by green,

magenta, blue, red, brown, yellow and violet, respectively.

As shown in Fig. 1, we can classify these cities into the

three groups, i.e., G(2)
1 , G(2)

2 , and G(2)
3 , by using the cut-off

point around 0.69 drawn by a yellow dotted line. Here note

that we employ the same cut-off point for the case of exper-

iments using the tri-mixing method as shown in Sec. 3.3.

We can observe that these groups G(2)
1 , G(2)

2 , and G(2)
3 , are

∗1 https://mapzen.com/data/metro-extracts
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Figure 1: Dendogram constructed by bi-mixing method

Figure 2: Difference of average z score δ(lp(2),Gs) and the

deviation ∆(lp(2)) over each group δ(lp(2),Gs)

mainly characterized by cities of NA for G(2)
1 , and AF, SA

for G(2)
2 , and WA, EA for G(2)

3 , respectively, although a few

number of the other continent cities are included. Thus,

we consider that our method could produce naturally in-

terpretable results which reflect regional characteristics of

these cities. Here we should emphasize that these results

are consistent to our former experiments using 17 cities ex-

cept that only Jakarta and London were classified into some

different groups [Maulana 16].

In Fig. 2, based on Equation (1), we plot the difference

of average z score δ(lp(2),Gs) from the average of all the

42 cities with respect to each local mixing pattern lp(2) of

group Gs. We can see that the local mixing patterns of 3-3,

3-4 and 4-4 exhibit relatively larger differences. Moreover,

based on Equation (2), we also plot the deviation value

∆(lp(2)) over each group δ(lp(2),Gs) and calculate by black

line. Here, as shown on the left hand side of table 2, we can

confirm that the top three characteristic mixing pattern

are 3-3, 3-4 and 4-4, which are referred to as discrimina-

tive mixing patterns and used as useful measure in order to

characterize each group in our method.

Table 3 shows the rankings of the cities according to their

normalized z scores with respect to the three discriminative

mixing patterns, 3-3, 3-4 and 4-4, respectively. From these

tables, we can see that the groups G1 and G3 are individually

characterized by relatively larger values at the 4-4 and 3-3

Table 2: Rank by ∆(lp(h))

Bi-Mixing Tri-Mixing

Rank ∆(lp(2)) lp(2) ∆(lp(3)) lp(3)

1 0.0587717 4-4 0.059665 1-3-1

2 0.0566443 3-3 0.03812 3-4-3

3 0.0403719 3-4 0.034149 5-5-5

4 0.0382356 2-2 0.024923 3-3-3

5 0.0370605 2-4 0.020593 2-2-2

Table 3: Rank by bi-mixing

3-3 3-4 4-4

Rank Grp Cities z Grp Cities z Grp Cities z

1 G3 Vienna 0.726 G2 Buenos Aires -0.101 G1 Richmond 0.778

2 G3 Kathmandu 0.661 G2 Mexico -0.056 G1 New York 0.763

3 G3 Venice 0.627 G2 Brasilia -0.035 G1 Barcelona 0.745

4 G1 Seoul 0.553 G2 Mecca -0.001 G1 Canberra 0.699

5 G3 Nairobi 0.537 G2 Accra 0.004 G1 San Francisco 0.691

6 G2 Mecca 0.528 G2 Lima 0.010 G1 Okinawa 0.684

7 G1 Dubai 0.519 G2 Munich 0.011 G1 Hong Kong 0.682

8 G1 Lisbon 0.496 G2 Johannesburg 0.015 G2 Panama 0.68

9 G3 Zurich 0.493 G2 Panama 0.024 G2 Paris 0.678

10 G1 Berlin 0.461 G2 New Delhi 0.031 G1 Washington DC 0.670

11 G3 Kolkata 0.460 G2 Paris 0.041 G2 Mexico 0.667

12 G1 Tokyo 0.458 G2 Amsterdam 0.042 G1 Houston 0.664

13 G1 Bologna 0.457 G1 Houston 0.059 G2 Johannesburg 0.657

14 G2 New Delhi 0.453 G1 New York 0.059 G2 Cairo 0.655

15 G1 Jakarta 0.448 G1 Dubai 0.068 G1 Jerusalem 0.647

patterns, while the group G2 is characterized by relatively

smaller value at 3-4 pattern respectively.

3.3 Tri-Mixing
Figure 3 shows the dendrogram constructed by our tri-

mixing method, where the total number of mixing patterns

from 1-2-1 to 5-5-5 amounts to 60, and each color of these

cities is depicted by the same one as shown in Fig. 1. Sim-

ilar to our experiment using the bi-mixing method, we can

classify these cities into the three groups, i.e., G(3)
1 , G(3)

2 and

G(3)
3 , by using the same cut-off point around 0.69 drawn by

a yellow dotted line.

In Fig. 4, based on Equation (1), we also plot the differ-

ence of average z score δ(lp(3),Gs) from the average of all

the 42 cities with respect to each local mixing pattern lp(3)

of group Gs. We can see that the local mixing patterns of

1-3-1, 3-4-3 and 5-5-5 exhibit relatively larger differences.

Based on Equation (2), we also plot the deviation ∆(lp(3))

over each group δ(lp(3),Gs) by black line. Again, as shown

on the right hand side of table 2, we can confirm that the

top three characteristic mixing patterns are 1-3-1, 3-4-3 and

5-5-5, which are used as discriminative mixing patterns.

Tables 4 shows the rankings of the cities according to their

normalized z score with respect to the three discriminative

mixing patterns, 1-3-1, 3-4-3 and 5-5-5, respectively. From

these tables, we can see that the groups G1, G2 and G3

are individually characterized by relatively larger values at

the 3-4-3, 1-3-1 and 5-5-5 patterns, respectively. Namely,

these results also support our claim that the characteristics

of these cities can be reasonably described in terms of a

relatively small number of selected discriminative mixing

patterns, as building blocks of given spatial networks.
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Figure 3: Dendogram constructed by tri-mixing method

Figure 4: Difference of average z score δ(lp(3),Gs) and the

deviation ∆(lp(3)) over each group δ(lp(3),Gs)

Table 4: Rank by tri-mixing

1-3-1 3-4-3 5-5-5

Rank Grp Cities z Grp Cities z Grp Cities z

1 G3 Buenos Aires 0.744 G2 Richmond 0.800 G1 Vienna 0.537

2 G3 Lima 0.696 G2 New York 0.793 G1 Kolkata 0.373

3 G3 New Delhi 0.655 G2 Barcelona 0.725 G1 Dubai 0.349

4 G3 Brasilia 0.636 G2 San Francisco 0.723 G1 Singapore 0.279

5 G3 Mecca 0.607 G3 Panama 0.710 G1 Venice 0.228

6 G3 Mexico 0.591 G1 Kathmandu 0.705 G1 Paris 0.193

7 G3 Jakarta 0.577 G2 Houston 0.690 G1 Lisbon 0.188

8 G3 Istanbul 0.558 G3 Johannesburg 0.682 G1 Jerusalem 0.174

9 G3 Munich 0.527 G2 Okinawa 0.668 G1 Hong Kong 0.161

10 G3 Johannesburg 0.525 G2 Canberra 0.668 G3 Brasilia 0.145

11 G1 Berlin 0.520 G3 Cairo 0.661 G3 Cairo 0.141

12 G1 Singapore 0.519 G2 Los Angeles 0.661 G2 Canberra 0.111

13 G3 Amsterdam 0.514 G3 Mexico 0.654 G1 Sydney 0.110

14 G3 Accra 0.512 G3 Accra 0.650 G1 London 0.107

15 G2 Washington DC 0.491 G1 Rome 0.649 G1 Seoul 0.105

4. Conclusion

We addressed the problem of classifying and characteriz-

ing spatial networks in terms of local connection patterns

of node degrees, In this paper, we extended our previous

methods referred to as the bi- and tri-mixing methods by

introducing a new measure to identify characteristic dis-

criminative patterns. In order to evaluate the reliability

and consistency of our proposed methods, We performed

our experiments using spatial networks constructed from

urban streets of 42 cities, by adding 15 cities to our former

experiments. From our experimental results, we confirmed

that our methods could produce naturally interpretable re-

sults which reflect regional characteristics of these cities.

Moreover, we showed that the characteristics of these cities

could be reasonably described in terms of a relatively small

number of selected discriminative mixing patterns, as build-

ing blocks of given spatial networks. In future, we plan to

evaluate our method using various spatial networks, and

attempt to establish more useful techniques for uncovering

degree mixing patterns, as building blocks of given spatial

networks.
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