
Incremental Factorization Machines for

Item Recommendation in Data Streams

Takuya Kitazawa

Graduate School of Information Science and Technology, The University of Tokyo, Japan

When thousands of users frequently interact with items on real-world applications, how can we implement
real-time recommender systems which update models incrementally? This study focuses on effective item recom-
mendation in such streaming environments and examines factorization machines (FMs) in an incremental fashion.
The author integrates incremental matrix factorization (iMF) and FMs, and implements incremental FMs for the
real-time item recommendation. The proposed recommender is (1) a general incremental predictor: incremental
FMs can achieve similar recommendation accuracy to the iMF-based conventional recommender, a specific incre-
mental predictor for user-item matrices, (2) robust: context-aware incremental FMs with optimal hyperparameters
show robust accuracy even in a streaming, drifting concepts environment, and (3) fast: recommendation and model
updating for a user is done in less than 0.1 second in typical personal computers. These strengths are evaluated
by an experiment using the time-stamped movie rating dataset.

1. Introduction

In this paper, to implement a highly flexible item rec-

ommender in a streaming fashion, the author proposes in-

cremental factorization machines (iFMs). Additionally, the

author also considers a relationship between iFMs and con-

cept drift, a well-known issue that characteristics of data

change over time in data streams.

While a lot of real-world applications such as e-commerce

shows high-frequency interactions between users and items,

conventional recommendation techniques like matrix fac-

torization (MF) [1] of a user-item matrix are strongly op-

timized for batch processing. So, several incremental algo-

rithms also have been studied, and an efficient incremental

MF algorithm with positive-only feedbacks (iMF) [2] is one

of the latest proposals.

On the other hand, recently, factorization machines

(FMs) [3] have been proposed as an alternative effective

factorization model. FMs are general predictors which can

incorporate various variables into a model as contextual in-

formation. The model can be seen generalized MF, but, to

the best of our knowledge, no one has studied to use FMs

in data streams as shown in Table 1.

Table 1: Comparison of the factorization algorithms

MF [1] iMF [2] FMs [3] iFMs

incremental ✓ ✓
context-aware ✓ ✓

Contributions of this paper are listed as follows:

1. General incremental predictor : iFMs without contex-

tual information achieve similar recommendation ac-

curacy to the conventional iMF-based recommender.

2. Robust : Context-aware iFMs with optimal hyperpa-

rameters show robust accuracy even in streaming,

drifting concepts environments.

Contact: k.takuti@gmail.com

3. Fast : For a user, iFMs recommend and update pa-

rameters in less than 0.1 second in typical personal

computers.

2. Item Recommendation in Data
Streams

This section formulates our recommendation problem and

introduces iMF, one of the most promising previous work

to solve the problem.

2.1 Problem Formulation
When a user u visits an application, our systems need to

recommend top-N items under a scoring procedure. More-

over, after observation of an event by a user (e.g. click,

buy, rate), the recommender incrementally updates a model

based on the observed event between the user u and an item

i. This recommend-then-update procedure is illustrated in

Fig. 1.

Figure 1: Item recommendation in data streams: (1)

a recommender provides a top-N list to a user, (2) the user

interacts with an item on an application, and (3) our model

is updated based on the interaction.

Therefore, the problem is to develop an algorithm which

can deal the above situation. Since such recommender sys-

tems always make a top-N list by using recently updated

model, recommendation accuracy at the time can be maxi-

mized, and the systems flexibly adapt to unforeseen events.

This paper focuses on rating, among other types of events,

and try to predict high-rated items.

1

The 30th Annual Conference of the Japanese Society for Artificial Intelligence, 2016

1C2-5

2.2 Incremental Matrix Factorization
MF [1] is one of the most promising solutions to make the

top-N recommendation based on user-item matrices. When

we have a matrix R ∈ Rn×m, MF decomposes it into two

factorized matrices P ∈ Rn×k and Q ∈ Rm×k. Hence, R is

approximated by PQT.

Let U , I be a set of user, item indices respectively, and

R ∈ R|U|×|I| be a user-item rating matrix. What MF ac-

tually does is to solve the following minimization problem

with a regularization parameter λ, for a set of observed user-

item ratings S = {(u, i) ∈ U × I}, a user factorized matrix

P ∈ R|U|×k, and an item factorized matrix Q ∈ R|I|×k.

min
P,Q

∑
(u,i)∈S

(
ru,i − pT

uqi

)2

+ λ (∥pu∥2 + ∥qi∥2). (1)

Here, ru,i indicates a (u, i) element in R, and pu,qi ∈ Rk

are respectively a factorized user, item vector. In a batch

fashion, an optimal solution can be found by using optimiza-

tion techniques such as stochastic gradient descent (SGD).

Ultimately, we can predict unobserved ratings by comput-

ing PQT and make recommendation based on the predicted

ratings.

While conventional MF has a great impact on modern

recommender systems, the model is not suitable for incre-

mental model updating and real-time prediction. So, Vina-

gre et al. [2] have proposed iMF, an incremental MF algo-

rithm with positive-only feedbacks; a recommender incre-

mentally updates a model P and Q when a positive event

(e.g. rating with a maximum score) is observed. Thanks

to the incrementally updating logic, a real-time prediction

and evaluation algorithm in a streaming environment had

been proposed [4]. Here, Alg. 1 demonstrates a recommend-

evaluate-update procedure based on iMF. The algorithm

computes the simple moving averages of recalls for the lat-

est w positive samples, and enables us to track evolution of

recommendation accuracy.

Algorithm 1 iMF: Recommendation and evaluation in a

streaming environment

Input: data stream or finite set of positive-only events

S, number of factorized features k,

size of a recommendation list N ,

window length for the simple moving average w,

regularization parameter λ，learning rate η
1: Generate P ∈ R|U|×k, Q ∈ R|I|×k from Gaussian

2: for (u, i) ∈ S do

Step 1: Recommend and evaluate

3: Score items: Q pu ∈ R|I|

4: Search an item i from the top-N scored items

5: Compute an average recall for the latest w samples

Step 2: Update (iMF)

6: pu ← pu + 2η
((
1− pT

uqi

)
qi − λ pu

)
7: qi ← qi + 2η

((
1− pT

uqi

)
pu − λ qi

)

3. Incremental Factorization Machines

3.1 Factorization Machines
Beyond numerous discussions about MF, recently FMs

[3] have been developed as general predictors based on the

“factorization” idea. In contrast to MF, FMs are formu-

lated by one simple equation which is very similar to the

polynomial regression, and the model can be applied all of

the regression, classification and ranking problems.

First of all, for an input vector x ∈ Rd, let us imag-

ine a linear model parameterized by w0 ∈ R，w ∈ Rd as

ŷLR(x) := w0 + wTx. Next, by incorporating interactions

of the d input variables, we extend the linear model into

the following second-order polynomial model.

ŷPR(x) := w0 +wTx+

d∑
i=1

d∑
j=i

wi,jxixj . (2)

Note that wi,j is an element in a symmetric matrix W ∈
Rd×d, and it indicates a weight of xixj , an interaction be-

tween the i-th and j-th variable.

FMs assume that W can be approximated by a low-rank

matrix; wij in Eq. (2) is approximated by using a rank-

k matrix V ∈ Rd×k, and the weights are replaced with

inner products of k dimensional vectors as wi,j ≈ vT
i vj

for v1, · · · ,vd ∈ Rk. Finally, the model is formulated as

follows:

ŷ(x) := w0︸︷︷︸
global bias

+wTx︸ ︷︷ ︸
linear

+

d∑
i=1

d∑
j=i

vT
i vj︸ ︷︷ ︸

interaction

xixj . (3)

Rendle [3] demonstrated that Eq. (3) can work as a gener-

alized factorization model; that is, a wide variety of predic-

tion model can be designed depending on a feature vector

and a loss function. For instance, let x ∈ R|U|+|I| be a

sparse input vector which has 1 only on xu and xi as:

(0, · · · , 0, 1, 0, · · · , 0,︸ ︷︷ ︸
user (1/|U|)

0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸
item (1/|I|)

) ∈ R|U|+|I|.

(4)

The input vector makes Eq. (3) simpler:

ŷ(x) = w0 + wu + wi + vT
uvi, (5)

and this formulation is clearly equivalent to biased MF; vu

and vi respectively correspond to pu and qi in Eq. (1).

Hence, if we choose the squared loss as a loss function, in-

cremental biased MF (biased-iMF) can also be implemented

in a similar way to Alg. 1.

3.2 Proposed Algorithm
This section focuses on FMs running in an incremental

fashion. Generally, learning FMs requires a set of parame-

ters Θ = {w0,w, V } and a loss function ℓ(ŷ(x | Θ), y) as the

formulation in the previous section shows, and the param-

eters can be optimized by SGD. More specifically, for one

sample (x, y) ∈ S, the parameters are updated as Alg. 2.

Here, ŷ(x | Θ) is written as ŷ for simplicity.

2

Algorithm 2 FMs: SGD parameter updating

Input: (x, y), k, η,

regularization parameters λ0, λw, λV1 , . . . , λVk

1: w0 ← w0 − η (∂
∂w0

ℓ(ŷ, y) + 2λ0w0)

2: for i ∈ {1, . . . , d} ∧ xi ̸= 0 do
3: wi ← wi − η (∂

∂wi
ℓ(ŷ, y) + 2λwwi)

4: for f ∈ {1, . . . , k} do
5: vi,f ← vi,f − η (∂

∂vi,f
ℓ(ŷ, y) + 2λVf vi,f)

Notice that Step 2 (iMF) in Alg. 1 is SGD updating for

single sample, so, if we replace the step with Alg. 2, an

incremental version of FMs is easily derived.

Let the number of nonzero elements in x be Nz(x). Im-

portantly, computational complexity of the interaction term∑d
i=1

∑d
j=i v

T
i vjxixj is O (kNz(x)). Consequently, if x is

sparse like Eq. (4), the term can be efficiently computed.

3.3 Context-aware Model against Concept
Drift

We can incorporate arbitrary contextual variables into

iFMs in the same way as FMs, so a dataset can be enriched

on-the-fly and adapted to unforeseen concept drift. To give

a motivating example, Fig. 2 shows an experimental result

of iMF (Alg. 1), which is similar to the result written in the

original iMF paper [2]. To avoid going into details, x-axis

and y-axis are simplified as time and accuracy respectively;

the details are explained in Section 4.

old ← time → new

a
c
c
u
ra

c
y

overfitting

Figure 2: Time evolution of accuracy: computed at

Step 1 in Alg. 1. The center dashed line indicates an over-

all average of the accuracy.

Fig. 2 clearly illustrates that the accuracy around the tail

of the graph (the purple diagonal area) is declined signif-

icantly, and the reason is probably concept drift. On the

one hand, users interacted with relatively new items, and

concepts (i.e. true items what the recommender should

recommend) are changed. However, at the same time, a

learnt model on our recommender is fitted in the interac-

tions before drifting concepts. As a consequence, overfitting

is observed as shown in Fig. 2.

Since drifting concepts require a recommender to predict

unknown items for unknown users, contextual variables are

greatly helpful. For example, a category and a price of an

item assist to find similar items, and users’ demographics

are good supplementary information. These techniques can

be easily implemented on iFMs, by just extending the fea-

ture vector described in Eq. (4).

4. Experiment on a Time-Stamped
Dataset

4.1 The MovieLens Dataset for Incremental
Recommender Systems

For experimental evaluation of the incremental recom-

mender systems, Vinagre et al. [4] first extracted positive-

only samples from time-stamped datasets. Next, they sepa-

rated the extracted samples into two parts; the initial 20%

samples are used for pre-training to avoid cold-start, and

evaluation is done by using the remaining 80% samples.

In this paper, the author chooses the MovieLens 1M

dataset, a well-known movie rating dataset, to examine our

iFMs algorithm, because iMF had also been evaluated on

the data [2], and concept drift is clearly observed on the

dataset as shown in Fig. 2. Basic properties of the dataset

is summarized in Table 2 and Fig. 4.

Table 2: Properties of the MovieLens 1M dataset

Event type rating

Value range 1–5 (5 is positive)

positive samples
pre-train (20%) 45,262

evaluation (80%) 181,048

0 50000 100000 150000 200000

sample index

0

200

400

600

800

1000

1200

e
la

p
s
e
d
 d

a
y
s

concept drift

Figure 4: Elapsed days: from the first positive sample.

The red dashed line marks the 20% pre-training samples.

According to Fig. 4, most positive samples are in less than

300 days from the first sample; unknown items and users are

not likely to be observed, and the incremental algorithms

probably work well. By contrast, concept drift may occur

around the end of the dataset because the elapsed days are

rapidly increased.

4.2 Experimental Condition
The author designed a context-aware input vector x as:

(0, · · · , 0, 1, 0, · · · , 0,︸ ︷︷ ︸
user (1/|U|)

0, · · · , 0, 1, 0, · · · , 0,︸ ︷︷ ︸
item (1/|I|)

10,︸︷︷︸
elapsed days (1)

0, · · · , 1, 0, 1, · · · , 0,︸ ︷︷ ︸
genres (n/18)

1,︸︷︷︸
sex (1)

3,︸︷︷︸
age group (1)

0, · · · , 0, 1, 0, · · · , 0︸ ︷︷ ︸
occupation (1/21)

) ∈ R|U|+|I|+42,(6)

by extending Eq. (4). A variable “elapsed days” is from

Fig. 4, and the other variables are directly obtained from

the MovieLens dataset.

As the competitors,

3

0

300

600

900

1200

1500

1800

e
la

p
s
e
d
 d

a
y
s

0 50000 100000 150000 200000

sample index

0.000

0.025

0.050

0.075

0.100

0.125

0.150

a
v
e
ra

g
e
 o

f
re

c
a
ll
@

1
0

static (0.00038)

iMF (0.00039)

biased-iMF (0.00043)

iFMs: no context (0.00385)

iFMs: context-aware (0.02125)

Figure 3: Average recall@10 behavior: The simple moving averages (w = 5000) of the recommendation accuracy for the

MovieLens 1M dataset. The gray dashed line near x = 50000 indicates the first 5,000 evaluation samples, and the background

pink area illustrates elapsed days which are identical with Fig. 4. Pre-training is done in the initial 20%. Values written in

the legend area are average running times of the recommend-evaluate-update procedure for one sample.

1⃝ static: Alg. 1 without Step 2,

2⃝ iMF: Alg. 1,

3⃝ biased-iMF: Step 2 in Alg. 1 considers the bias

terms in Eq. (5)

are employed. Additionally, iFMs (replaced Step 2 in

Alg. 1 with Alg. 2) are tested with the two different fea-

ture vectors:

4⃝ iFMs: no context: Eq. (4),

5⃝ iFMs: context-aware: Eq. (6).

Hyperparameters are set as Table 3. Here, η is a learning

rate, and k indicates a factorized “rank” of each variable.

Table 3: Hyperparameters of the examined methods

regularization parameters η k

1⃝
λ = 0.01 0.030

4

2⃝
3⃝
4⃝ λ0 = λw = 0.01,

0.003
5⃝ λV1 = · · · = λVk = 30.0

In addition to Table 3, λ0 and λw are automatically up-

dated in an adaptive regularization scheme [5].

The author implemented all of the methods in Python

2.7.11, and the code was run in a typical personal computer

with the 2.7 GHz Intel R⃝ CoreTM i7 CPU and 4GB RAM.

4.3 Results and Discussions
Time evolution of the average recalls resulting from

the recommend-evaluate-update procedure is illustrated in

Fig. 3. Recall@10 is 1 if and only if a true observed item

i is in a top-10 list of items for a user u; higher plots indi-

cate better, accurate recommendation. In terms of running

time, all of the incremental algorithms recommended items

and updated parameters in less than 0.1 second per sample.

Unsurprisingly, whereas the static baseline (grey) showed

poor accuracy, iMF (blue) and biased-iMF (green) gener-

ated more accurate recommendations thanks to their fast,

incremental algorithm. However, as the author mentioned

in Section 3.3, incremental models without contextual infor-

mation are easily fallen into overfitting. So, their recall@10

averages for the late samples were declined as Fig. 2.

On iFMs, the feature vector without contextual variables

(orange) showed the best overall accuracy, but the late de-

cline caused by concept drift is still observed. On the other

hand, the context-aware input vector (red) showed robust

recommendation even under drifting concepts condition,

with similar overall accuracy to the orange line. These re-

sults suggest that context-aware iFMs work as fast, robust

incremental recommender systems.

5. Conclusion

This paper has proposed and examined iFMs, general

incremental predictors, for an item recommendation task

in data streams. As a result of the experiment, iFMs

have shown robust recommendation against concept drift,

whereas the conventional factorization models fallen into

overfitting. Meanwhile, the factorization models still re-

quire extra work to find optimal hyperparameters. So, in

the future, adaptive optimization like [5] must be studied

more, especially in a streaming fashion.

References

[1] Y. Koren, et al., “Matrix Factorization Techniques for

Recommender Systems,” Computer, 42(8):3037, Aug.

2009.

[2] J. Vinagre, et al., “Fast Incremental Matrix Factor-

ization for Recommendation with Positive-only Feed-

back,” Proc. of UMAP 2014, July 2014.

[3] S. Rendle, “Factorization Machines with libFM,” ACM

Trans. Intell. Syst. Technol., 3(3), May 2012.

[4] J. Vinagre, et al., “Evaluation of Recommender Sys-

tems in Streaming Environments,” Proc. of REDD

2014, Oct. 2014.

[5] S. Rendle, “Learning Recommender Systems with

Adaptive Regularization,” Proc. of WSDM 2012, Feb.

2012.

4

