
Partial Graph Matching by Enumerating Pseudo-Cliques

in a Common Space

HongJie Zhai∗1 Makoto Haraguchi∗1

∗1 Graduate School of Information Science and Technology, Hokkaido University

We proposed a new method for partial graph matching based on non-negative matrix factorization (NMF) and
pseudo-clique mining. Compared with existing researches, it can find several potential matching solutions with
different structural and attribute similarities. To achieve this purpose, we firstly map all the vertices of graphs
into a common space by a modified non-negative matrix factorization. To find several subspaces in which local
similarities between graphs can be observed, we apply pseudo-clique enumerator in this common space. As the
similarity between graphs can be a global similarity in each subspace, standard global graph matching techniques
is enough to cut off useless vertices and to obtain a targeted similarity as a result of partial graph matching. Our
contributions in this research are that: Firstly, we presented a new framework for solving partial graph matching
problem. Secondly, we designed a new class of NMF for finding common space. Furthermore, our experiments on
both images and text data-sets reveal that our formulation works well on different kinds of data.

1. Introduction

Partial Graph Matching In computer science, Graph

Matching (GM) is an important research theme that can

be used for formalizing many problems in data mining and

signal processing[Mateus et al., 2008; Brendel and Todor-

ovic, 2011]. In past several decades, the GM problem has

been extensivly researched in both practical and theoretical

aspects[Zhou and De la Torre, 2012; Livi and Rizzi, 2013].

However, most of these researches focus on the matching

problem between two graphs with the same number of ver-

tices (i.e. globally matching)[Livi and Rizzi, 2013]. Al-

though some works suppose that one side of graphs can

only use part of its vertices (i.e. subgraph matching), there

are only a few researches focusing on finding common sub-

graphs. In real-world problems, given two graphs, there

usually does not exist a global matching. For example,

when we consider the matching problem of CAD models

in Figure 1, the two objects only share a small part of

them. To apply the existing graph matching techniques

to these real-world problems, it is necessary to manually

mark out the parts (candidates) we want to match. When

the graphs become larger, manually marking becomes im-

practical. Thus, it is necessary to develop an automatical

subgraph to subgraph matching algorithm. In this paper,

we call this subgraph to subgraph matching problem the

Partial Graph Matching (PGM)∗1. Different from the

global matching problem, in many cases, the partial graph

matching problems have more than one solutions. Further-

more, some solutions can only be found under some specific

aspects. For example, in the field of text mining, it is a
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∗1 In many papers, subgraph to subgraph matching is called
Common Subgraph Isomorphism. However, to make a clear
distinction from the subgraph matching problem, we use the
term Partial Graph Matching.

very common phenomonon that the meaning of article dif-

fers regarding to the readers’ aspect. Thus, the matching

between articles will also depend on how the readers un-

derstand. The more partial matching solutions we get, the

more information are kept. As the result, we can select the

best matching according to our aspect. For this reason, it

is necessary to develop a partial graph matching algorithm

which can find solutions from different aspects.

Technically speaking, the PGM problem to be considered

in this paper can be formalized as the following form:

PS1G1S
T
2 P

T ≈ S2G2S
T
2 (1)

where G1 and G2 are the matrix representations (e.g.

weighted adjacent matrix, gram matrix, etc.) of two given

graphs. S1 and S2 are Selection Matrixes (SM). SM is

used to select a subset of vertices (i.e. a subset of rows and

colmuns of matrix representions) from the whole graph. P

is the permutation matrix, which is used to swap the order

of vertices. The whole equation 1 means that we find a sub-

graph from G1 whose permutated matrix representation is

approximately equal to a subgraph from G2. Additionally,

even though G1 and G2 may have different number of ver-

tices, the size of matched subgraphs should be the same.

In equation 1, when comparing the left and right terms,

we use approximately equal instead of equal. The reason is

that for real-world data, it is difficult to find two subgraphs

which can matched perfectly. We will discuss more details

about partial graph matching in later sections.

2. Previous Works

Although most researches of GM are focus on global

matching or subgraph matching, there are many common

concepts between the PGM problem and global matching

or subgraph matching problem. Thus, we will give a brief

review on previous works on PGM as well as global match-

ing and subgraph matching. The global matching problem

can be written in the similar form with PGM:
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Figure 1: An example of the partial match problem. The

red area represents the partial structure expected to be

matched.

PG1P
T ≈ G2 (2)

where P is the permutation matrix and G1, G2 are the

matrix representations of graphs. This formulation is called

the Koopmans-Beckmann’s quadratic assignment problem.

From the viewpoint of optimization, combinatorially opti-

mizing QAP of glabal matching is NP-hard. Thus, recent

works on global matching are mainly focused on developing

better approximate algorithm under some relaxations. The

basic idea of relaxation is replacing the permutation matrix

P with a real-valued matrix while trying to keep some key

features of P in the mean time. For example, [Umeyama,

1988] approximate the permutation matrix with an orthog-

onal matrix. [Ding et al., 2008] developed an algorithm

based on non-negative matrix factorization (NMF) by re-

laxing the permutation matrix to a non-negative orthogo-

nal matrix. The more general formalization, i.e. Lawler’s

quadratic assignment problem, can also be approximated

by the similar strategy.

Comparing to global matching, the subgraph matching

problem is much more difficult. In the subgraph matching

problem, the given graphs can have different size. The tar-

get of subgraph matching is to find a subgraph from bigger

graphs which globally matches the smaller one. In terms of

the formula, the subgraph matching can be written as:[Tao

and Wang, 2016]

PSG1S
TPT ≈ G2 (3)

In this equation, the graph G1 is bigger than G2. Same

with the PGM problem, P is the permutation matrix and

S is the selection matrix. The difference between subgraph

matching and partial matching is that in subgraph match-

ing, we only need to find the selection matrix for one side.

[Ullmann, 1976] firstly proposed an exact algorithm for sub-

graph matching. After that, much effort has been made in

combinatioral methods[Zampelli et al., 2005; Batz, 2006].

For the approximate side, [Tao and Wang, 2016] has done

a good work. They use the orthogonal relaxation of permu-

tation matrix and develop a optimization framework based

on gradient flow.

For the partial graph matching problem, which is also

known as the common subgraph problem, most methods

are based on the combinatioral technique. Many of these

algorithms[Raymond and Willett, 2002; Krissinel and Hen-

rick, 2004] are designed for simple graph without weights

for vertices or edges. Although [Bunke, 1997] and [Kriege

and Mutzel, 2012] provides the techniques for finding par-

tial matching of labeled graphs, their algorithms need to

work in the product space. Generally speaking, the size of

product space will increase greatly with respect to the size

of graph. Thus, the algorithms based on product space can

only work on very small graphs (e.g. less than 100 vertices).

Moreover, as we have discussed previously, in PGM, there

usually exists more than one possible matching solutions.

Combinatorial techniques are suitable for finding all pos-

sible solutions but they suffer the efficiency problem. The

approximating techniques from global matching can only

find one local optimized solution. Thus, to find multiple

partial matching between large graphs (tens of thousands

of vertices), it is necessary to adopt a new strategy.

3. Proposal and Contribution

In this paper, we propose a novel framework for approxi-

mating the partial graph matching of weighted graphs. Our

framework only requires searching in the union space of two

graph instead of the big product space. Hence, our frame-

work can be applied on large graphs. Furthermore, our

framework is able to find multiple partial graph matching

solutions at once. Additionally, this framework can be eas-

ily extended for varint types of graphs. As the result, we

can get a union view of the partial graph matching prob-

lem over different types of data. Figure 2 shows the gen-

eral flow of our framework: First, we map the given graphs

into a common space by a non-negative matrix factoriza-

tion (NMF) algorithm. The NMF algorithm will map the

vertices which have similar features to the similar positions.

Second, we build a union graph in this common space based

on the euclid distances. Third, by enumerating pseudo-

cliques in this union graph, we find several subspaces (i.e.

pseudo-cliques) which contains the possible partial match-

ing solutions. Each subspace represents one viewpoint of

similarity. Finally, in each subspace, we do a global match-

ing or subgraph matching with existing techniques to cut

off the vertices which can not be matched. Because the

non-negative matrix factorization algorithm usually works

efficiently and the global matching or subgraph matching

only happens in a small subspace, we can get good partial

matching solutions without spending too much time.

4. Terminology Definitions

In this paper, we mainly consider the partial graph

matching problem on weighted graphs. We use the weighted

adjacent matrix to represent this type of graphs. By given

a graph G, we use vi to represent the i-th vertex and ei,j to

represent the edge between i-th and j-th vertex. If vi and

vj are connected, ei,j is 1, or it will be 0. The notions |V G|
and |EG| denote the numbers of vertices and edges. G(V)
represents the subgraph of G from the vertices set V. Based
on these definitions, we can give the formal formulation of

partial graph matching:
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Figure 2: General Flow of Partial Graph Matching Frame-

work

Definition 1. Partial Graph Matching For two given

graphs G1 and G2, the solution of partial graph matching is

a tuple of integer-valued matrix (S1, S2, P ), where

• PS1A
G1ST

1 P
T ≈ S2A

G2ST
2

• PPT = PTP = I, S1S
T
1 = I, S2S

T
2 = I

P is the permutation matrix, S1 and S2 are called selec-

tion matrixes, which are used to select a subset of vertices

from given graphs. The selection matrix has been proposed

as the Translation Matrix by [Tao and Wang, 2016].

5. Algorithms for Partial Graph
Matching

To solve the partial graph matching problem, we consider

the following relaxation on Definition 1:

S1 ∈ RB×|V AG1 |, S2 ∈ RA×|V AG2 |,

P ∈ RA×B , PPT = PTP = I, SST = I,

P ≥ 0, S1 ≥ 0, S2 ≥ 0

(4)

Finally the formulation in Definition 1 can be trans-

formed to the following problem:

Definition 2. Relaxed Partial Graph Matching

(RPGM) Given two graph G1 and G2, the solution of re-

laxed partial graph matching is a tuple of non-negative ma-

trix (N†
1 ,M

†
1 , N

†
2 ,M

†
2 ), where:

AG1 ≈ N†
1CM†

1

AG2 ≈ N†
2CM†

2

N†
1N

†
1

T
= I,N†

2N
†
2

T
= I,

M†
2

T
M†

2 = I,M†
2

T
M†

2 = I,

(5)

We notice that because N{1,2} and M{1,2} are all non-

negative, this RPGM problem can be solved by the non-

negative matrix factorization algorithm. From the view-

point of NMF, C is the common space shared by AG1 and

AG2 . Each column of M{1,2} is the vector representations

for the corresponded vertex. N{1,2} are the matrixes that

transform the common space to the space of each graph (i.e.

G1, G2). By using the frobenius norm formulation of NMF,

we can follow [Lee and Seung, 2001] to derive the update

rules for RPGM:

Algorithm 1. Update Rule of RPGM

M†
1 jk ←M†

1 jk

(CTN†
1

T
A)jk

(CTN†
1

T
N†

1CM†
1 )jk

(6)

M†
2 jk ←M†

2 jk

(CTN†
2

T
A)jk

(CTN†
2

T
N†

2CM†
2 )jk

(7)

N†
1 jk ← N†

1 jk

(AG1M†
1C

T )jk

(N†
1CM†

1M
†
1

T
CT )jk

(8)

N†
2 jk ← N†

2 jk

(AG2M†
2C

T )jk

(N†
2CM†

2M
†
2

T
CT )jk

(9)

Cjk ← Cjk
(N†

1

T
AG1M†

1

T
+N†

2

T
AG2M†

2

T
)jk

(N†
1

T
N†

1CM†
1M

†
1

T
+N†

2

T
N†

2CM†
2M

†
2

T
)jk
(10)

By viewing C as the common space, M1 and M2 are

the vector representations in this common space. If two

vectors (vertices) v1 ∈ G1 and v2 ∈ G2 are close in the

common space, they have the chance to be matched. Thus,

we can know the clusters in common space represent the

possible solution sets of RPGM problem. Because the

matched parts of graphs are empirically highly overlapped,

we adopt the pseudo-clique model for detecting clusters.

Each pseudo-clique represents one subspace that contains

a possible PGM solution. As the result, we can apply the

global matching algorithms in each pseudo-clique to find

the final matching solution. Our algorithm is summarized

as follows:

1: procedure Partial Graph Matching(G1,G2, σ)

2: Randomly initialize N1, N2, M1, M2, C.

3: repeat

4: Update M1, M2 with Equation 6,7 by fixing N1,

N2, C.

5: Update N1, N2 with Equation 8,9 by fixing M1,

M2, C.

6: Update C with Equation 10 by fixing N1, N2,

M1, M2.

7: until RPGM is Convergence

8: Treat each column of M1 and M2 as a new vector of

corresponded vertex, calculate euclid distance d(vi, vj)

between all pairs of vertices.

9: V GC ← V G1 ∪ V G2

10: EGC ← {eij |d(vi, vj) < σ} ▷ If two vertices are

close in the common space, they are connected.
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11: Build new graph GC(V GC , EGC ).

12: Perform pseudo-clique searching in GC .

13: for Each pseudo-clique PC do

14: Perform global graph matching algorithm in PC.

15: end for

16: end procedure

6. Experiment

To demostrate the ability and performance of the RPGM

algorithm, we applied our algorithm on several types of

data, including the artificial dataset, CAD data[Tao and

Wang, 2016] and images[Zhou and De la Torre, 2012]. We

will report the details of experiment in the presentation.

7. Concluding Remarks and Future
Works

In this paper, we presented a noval framework for the

partial graph matching problem. We showed that by some

relaxation, the RPGM can be solved as one class of the

NMF problem. Furthermore, to find multiple solutions,

we proposed a efficient subspace search approach based on

the pseudo-clique enumeration. To improve the accuracy

of pratial matching in each subspace, we apply the global

matching techniques. The union of all these processes allow

us to find good partial graph matchings efficiently. Because

of the limitation of time, several questions remain to be

investigated in future:

• The theoretical relation between subspace search of

PGM and pseudo-clique enumeration is still unre-

vealed.

• The proposed framework only considers the weighted

graphs. We need a more general formulation to handle

those data which can not be represented with weighted

graphs.

• When building the union graph in the common space,

a parameter σ is used to contral connectedness. Gen-

erally speaking, selecting parameters is a difficult task.

Thus, we need to provide a guidance for the parameter.
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