
Tiebreaking Strategies for A* Search: How to Explore the Final Frontier

(Extended Abstract)

Masataro Asai∗1 Alex Fukunaga∗1

Graduate School of Arts and Sciences, The University of Tokyo

Despite recent improvements in search techniques for cost-optimal classical planning, the exponential growth of
the size of the search frontier in A* is unavoidable. We investigate tiebreaking strategies for A*, experimentally
analyzing the performance of standard tiebreaking strategies that break ties according to the heuristic value of the
nodes. We find that tiebreaking has a significant impact on search algorithm performance when there are zero-cost
operators that induce large plateau regions in the search space. We develop a new framework for tiebreaking based
on a depth metric which measures distance from the entrance to the plateau, and propose a new, randomized
strategy which significantly outperforms standard strategies on domains with zero-cost actions.

This is an extended abstract of the paper accepted to the 30th AAAI Conference of Artificial
Intelligence (peer reviewed, 25% accept ratio). For the full article, visit http://guicho271828.
github.io/publications/.

1. Introduction
This paper investigates tiebreaking strategies for A∗, the stan-

dard search algorithm for finding an optimal-cost path from an ini-
tial state s to some goal state g ∈ G in a search space represented
as a graph [Hart 68]. In each iteration, A∗ selects and expands a
node n from the OPEN priority queue. n is the node which has
the lowest f -cost in OPEN, where for node n, f(n) is the sum of
g(n), the cost of the current path from the initial state to n, and
h(n), a heuristic estimate of the cost from n to a goal state. A∗ re-
turns an optimal solution when h is admissible, i.e., when h ≤ h∗,
where h∗ is the optimal distance to the goal.

If f∗ is the cost of the optimal solution, the effective search
space of A∗ is the set of nodes with f(n) ≤ f∗, and much of the
work in the search and planning literature has focused on reducing
the size of this effective search space by developing more accurate,
admissible heuristic functions.

In many problems, the size of the last layer of search (which
explores the set of nodes with f(n) = f∗) accounts for a sig-
nificant fraction of the effective search space of A∗. Figure 1
plots the number of states with f(n) = f∗ (y-axis) vs. the #
of states with f(n) ≤ f∗ for 1104 problem instances from the In-
ternational Planning Competition (IPC1998-2011). For many in-
stances, a large fraction of the nodes in the effective search space
have f(n) = f∗. For example, in the Openstacks domain, almost
all states with f(n) ≤ f∗ have cost f∗ due to the large number
of actions with cost 0. In such domains, the tiebreaking policy
which decides which nodes to expand in the final frontier can have
a significant impact on the performance of A∗.

In this paper, we investigate the tiebreaking strategy used by
A∗, which is the policy for selecting which node to expand among
nodes with the same f -cost. It is widely believed that among nodes
with the same f -cost, ties should be broken according to h(n),
i.e., nodes with smaller h-values should be expanded first. While
this is a useful rule of thumb in many domains, it turns out that
tiebreaking requires more careful consideration, particularly for
problems with large plateaus – regions of the search space with

Contact: guicho2.71828 α©gmail.com

the same f and h values.
We first empirically evaluate standard tiebreaking strategies for

A∗, and show that (1) a Last-In-First-Out (lifo) policy tends to
be more efficient than a First-In-First-Out (fifo) policy, and (2)
tiebreaking according to the heuristic value h, which frequently
appears in the heuristic search literature, has little impact on the
performance as long as a lifo policy is used. We show that there
are significant performance differences among tiebreaking strate-
gies when domains include zero-cost actions. While there are rel-
atively few domains with zero-cost actions in the IPC benchmark
set, we argue that zero-cost actions naturally occur in practical
cost-minimization problems.

In order to solve such problems more efficiently, we propose
tiebreaking methods based on a notion of depth within the plateau,
corresponding to the number of steps a node is from the “entrance”
to the plateau. We empirically show that: (1) a randomized, depth-
based strategy significantly outperforms other tiebreaking strate-
gies using the same heuristic function; (2) although depth is a
component of a multi-level tiebreaking strategy, the depth is the
principal factor in determining performance; and (3) depth-based
tiebreaking is robust, in the sense that it does not rely on a particu-
lar action ordering in the domain definition. Note that all tiebreak-
ing strategies in this paper maintain the optimality of the search
algorithm because they only affect node expansion order among
the nodes with the same f -cost.

2. Preliminaries and Definitions
We first define some notation and terminology used through-

out the rest of the paper. A tiebreaking strategy selects from
among nodes with the same f -value. Tiebreaking strategies are
denoted as [criterion1, criterion2, ..., criterionk], which means: If
there are multiple nodes with the same f -value, first, break ties
using criterion1. If there are still multiple nodes remaining, then
break ties using criterion2 and so on, until a single node is se-
lected. The first-level tiebreaking policy of a strategy is criterion1,
the second-level tiebreaking policy is criterion2, and so on.

A plateau is a set of nodes in OPEN with both the same f and

1

The 30th Annual Conference of the Japanese Society for Artificial Intelligence, 2016

1F2-2

100

102

104

106

108

100 102 104 106 108

of

 N
od

es
 w

it
h

f
=

 f
*

Total Number of Nodes

y=x

Figure 1: The # of nodes with f = f∗ (y-axis)
compared to the total # of nodes in the search
space (x-axis) with f ≤ f∗ on 1104 IPC bench-
mark problems, using modified Fast Downward
with LMcut which generates all nodes with cost
f∗.

100

102

104

106

108

100 102 104 106 108

of

 N
od

es
 w

it
h

f
=

 f
* , h

 =
 0

Total Number of Nodes

openstacks-opt11
cybersec
y=x

Figure 2: Similar to Figure 1; y-axis shows #
nodes with f = f∗, h = 0, which forms the
final plateau when h-based tiebreaking is en-
abled. Note that many Openstacks and Cyber-
sec instances are near the y = x line.

100

102

104

106

108

100 102 104 106 108

of

 N
od

es
 w

it
h

f
=

 f
* , h

 =
 0

Total Number of Nodes

y=x

Figure 3: Similar to Figure 2, but for
620 instances from our zerocost do-
mains (Sec. 4.), where zero-cost ac-
tions induce very large plateaus.

same h costs. A plateau whose nodes have f -cost fp and h-cost hp
is denoted as plateau (fp, hp). An entrance to a plateau (fp, hp) is
a node n ∈ plateau (fp, hp), whose current parent is not a member
of plateau (fp, hp). The final plateau, is the plateau containing the
solution found by the search algorithm. In A∗ using admissible
heuristics, the final plateau is plateau (f∗, 0).

3. Background: Tiebreaking Strategies in A∗

If multiple nodes with the same f -cost are possible, A∗ must
implement some tiebreaking policy (either explicitly or implic-
itly) which selects from among these nodes. The early literature
on heuristic search seems to have been mostly agnostic regarding
tiebreaking. The original A∗ paper, as well as Nilsson’s subse-
quent textbook states: “Select the open node n whose value f

is smallest. Resolve ties arbitrarily, but always in favor of any
[goal node]” [Hart 68, p.102 Step 2], [Nilsson 71, p.69]. Pearl’s
textbook on heuristic search specifies that best-first search should
“break ties arbitrarily” ([Pearl 84], p.48, Step 3), and does not
specifically mention tiebreaking for A∗. To the best of our knowl-
edge, the first explicit mention of a tiebreaking policy that consid-
ers node generation order is by Korf in his analysis of IDA*: “If
A∗ employs the tiebreaking rule of ’most-recently generated’, it
must also expand the same nodes [as IDA*]”, i.e., a lifo ordering.

In recent years, tiebreaking according to h-values has become
“folklore” in the search community. [Hansen 07] state that “It is
well-known that A∗ achieves best performance when it breaks ties
in favor of nodes with least h-cost” [Hansen 07]. [Holte 10] writes
“A∗ breaks ties in favor of larger g-values, as is most often done”
[Holte 10, note that since f = g + h, preferring large g is equiv-
alent to preferring smaller h]. In their detailed survey/tutorial on
efficient A∗ implementations, [Burns 12] ([Burns 12]) also break
ties “preferring high g” (equivalent to low h). Thus, tiebreaking
according to h-values appears to be ubiquitous in practice. To
our knowledge, an in-depth, experimental analysis of tiebreaking
strategies for A∗ is lacking in the literature.

Although the standard practice of tiebreaking according to h

might be sufficient in some domains, further levels of tiebreak-
ing (explicit or implicit) are required if multiple nodes can have
the same f and h values. While the survey of efficient A∗ imple-

mentation techniques in [Burns 12] did not explicitly mention 2nd-
level tiebreaking, their library code (https://github.com/eaburns/search)
first breaks ties according to h, and then breaks remaining ties ac-
cording to a lifo policy (most recently generated nodes first), i.e.,
a [h, lifo] strategy. Although not documented, their choice of a lifo
2nd-level tiebreaking policy appears to be a natural consequence
of the fact it can be trivially, efficiently implemented in their two-
level bucket (vector) implementation of OPEN. In contrast, the
current implementation of the state-of-the-art A∗ based planner
Fast Downward [Helmert 06], as well as the work by [Röger 10]
uses a [h, fifo] tiebreaking strategy. Although we could not find an
explanation, this choice is most likely due to their use of alternat-
ing OPEN lists, in which case the fifo second-level policy serves to
provide a limited form of fairness.
Evaluation of Standard Strategies

We evaluated tiebreaking strategies for domain-independent,
classical planning. In our experiments, the planners are based on
Fast Downward (revision 6251), and all experiments are run with
a 5-minute, 2GB memory limit for the search binary (FD transla-
tion/preprocessing times are not included in the 5-minute limit).
All experiments were conducted on Xeon E5410@2.33GHz
CPUs. We used 1104 instances from 35 standard benchmark do-
mains.

We first compared two commonly used tiebreaking strategies,
[h, fifo], [h, lifo], which first break ties according to h, and then
apply fifo or lifo second-level tiebreaking, respectively. Detailed
results for the LMcut heuristic [Helmert 09], as well as summary
results for the M&S heuristic [Helmert 14], are shown in Table
1 (leftmost 2 columns). Differences in coverage are observed in
several domains, and [h, lifo] outperforms [h, fifo] in total. Figure
4 gives us a more fine-grained analysis by comparing the number
of node evaluation (computations of LMcut) of the [h, lifo] and
[h, fifo] strategies. It shows that the difference in the # of nodes
evaluated can sometimes be larger than a factor of 10 (Openstacks,
Cybersec domains).

4. Domains with Zero-Cost Actions
Openstacks is a cost minimization domain introduced in IPC-

2006, where the objective is to minimize the number of stacks

2

Coverages (# problems solved) Coverage (# problems solved), 10 runs (mean±sd) Wilcoxon p vs [h, rd, ro]
Domain [h, fifo] [h, lifo] [fifo] [lifo] [h, fd, ro] [h, ld, ro] [h, rd, ro] [rd, ro] [h, ro] [h, fd, ro] [h, ld, ro] [h, ro]

LMcut IPC (1104) 558 565 442 556 556.6±0.7 570.3±2.1 572.8±0.7 558.8±2.1 559.8±1.0 0.0 .01 0.0
airport(50) 27 26 18 26 26.2±0.4 26.2±0.4 26.2±0.4 21.0±0.0 26.0±0.0 1.0 1.0 .17

cybersec(19) 2 3 0 3 2.0±0.0 8.5±2.0 10.9±0.8 7.4±0.7 4.4±1.0 0.0 .01 0.0
logistics00(28) 20 20 16 18 20.0±0.0 20.0±0.0 20.0±0.0 20.0±0.0 20.0±0.0 1.0 1.0 1.0
miconic(150) 140 140 68 140 140.0±0.0 140.0±0.0 140.0±0.0 135.5±1.2 140.0±0.0 1.0 1.0 1.0

openstacks-opt11(20) 11 18 11 18 11.0±0.0 18.0±0.0 18.0±0.0 18.0±0.0 11.6±0.5 0.0 1.0 0.0
pipesworld-notankage(50) 15 14 13 13 14.4±0.5 14.6±0.5 14.7±0.5 14.3±0.5 14.9±0.3 0.2 .68 0.3

scanalyzer-opt11(20) 10 10 4 10 10.0±0.0 10.0±0.0 10.0±0.0 9.0±0.0 10.0±0.0 1.0 1.0 1.0
woodworking-opt11(20) 10 10 6 9 10.0±0.0 10.0±0.0 10.0±0.0 11.6±0.5 10.0±0.0 1.0 1.0 1.0

LMcut Zerocost(620) 256 279 212 281 257.4±2.0 286.6±7.1 294.2±2.3 279.9±3.9 264.9±1.8 0.0 .01 0.0
airport-fuel(20) 15 13 7 15 14.7±1.0 14.0±0.6 14.6±0.5 10.5±0.7 14.4±0.7 .59 .05 .58

driverlog-fuel(20) 8 8 7 8 8.0±0.0 7.7±0.5 8.0±0.0 8.0±0.0 8.0±0.0 1.0 .08 1.0
elevators-up(20) 7 13 7 13 7.0±0.0 9.4±0.7 10.7±1.1 8.3±0.6 7.3±0.5 0.0 .02 0.0

freecell-move(20) 4 19 4 19 4.0±0.0 19.7±0.5 17.2±0.6 16.7±1.0 5.0±0.4 0.0 0.0 0.0
miconic-up(30) 16 17 10 17 15.7±0.5 19.4±0.7 20.4±1.2 20.4±0.9 17.0±0.4 0.0 .03 0.0

mprime-succumb(35) 15 14 12 14 16.3±0.5 18.9±4.0 20.5±0.8 18.1±1.6 17.9±0.5 0.0 .15 0.0
pipesnt-pushstart(20) 8 8 6 7 8.0±0.0 8.8±1.3 9.8±0.4 9.7±0.5 8.5±0.5 0.0 0.1 0.0

pipesworld-pushend(20) 3 4 2 4 3.0±0.0 4.2±1.0 4.9±0.5 5.2±1.2 3.9±0.3 0.0 .09 0.0
scanalyzer-analyze(20) 9 9 3 9 9.8±0.9 9.4±0.5 9.2±0.4 7.3±1.0 9.1±0.3 .07 .37 .58

tpp-fuel(30) 8 11 7 11 7.5±0.5 11.0±0.0 11.0±0.0 11.0±0.0 8.1±0.3 0.0 1.0 0.0
woodworking-cut(20) 5 7 2 7 5.0±0.0 6.9±0.3 9.2±0.9 7.7±0.6 7.1±0.3 0.0 0.0 0.0

LMcut Total(1724) 814 844 654 837 814.0±2.3 856.9±8.5 867.0±2.1 838.7±4.9 824.7±2.1 0.0 .01 0.0
M&S IPC (1104) 479 488 451 481 478.8±0.4 484.8±0.4 484.0±0.0 481.4±1.4 486.4±0.8 .01 .02 .01

M&S Zerocost (620) 276 290 226 283 274.0±0.9 293.4±2.1 310.2±2.1 303.2±1.7 288.0±1.7 .01 .01 .01
M&S Total(1724) 755 778 677 764 752.8±0.7 778.2±1.9 794.2±2.1 784.6±2.1 774.4±1.2 .01 .01 .01

Table 1: Coverage comparison (# of instances solved in 5min, 2GB), bold=best. Zerocost domains are named as [original name]-[name of
nonzero action]. Due to space, we only show the domains whose maximum pairwise coverage difference MaxDiff > 2. (We used the means
of 10 runs for the randomized strategies.) Domains with MaxDiff ≤ 2 follows: (1) MaxDiff = 0 (same coverages by all configuration
and all runs): barman-opt11, floortile-opt11, grid, gripper, hanoi, parking-opt11, pegsol-opt11, psr-small, rovers, sokoban-opt11, tpp, transport-opt11, grid-fuel, gripper-move, parking-

movecc, psr-small-open, zenotravel-fuel. (2) 0 < MaxDiff ≤ 1: depot, driverlog, elevators-opt11, freecell, mystery, parcprinter-opt11, pathways, pipesworld-tankage, storage,

tidybot-opt11, visitall-opt11, driverlog-fuel, floortile-ink, hiking-fuel, logistic00-fuel, nomystery-fuel, pathways-fuel, sokoban-pushgoal. (3) 1 < MaxDiff ≤ 2: blocks, nomystery-opt11,

pipesworld-notankage, zenotravel, depot-fuel, rovers-fuel, storage-lift, tidybot-motion.

100

104

108

100 104 108

ev

al
ua

ti
on

 b
y

[h
,li

fo
]

evaluation by [h,fifo]

y=x
y=x/10
others
Cybersec
Openstacks-Opt11

Figure 4: # of evaluations of standard fifo vs lifo second-level
tiebreaking, with first-level h tiebreaking. lifo evaluates less than
1/10 of the nodes evaluated by fifo in Cybersec and Openstacks.

used. There are many zero-cost actions (i.e., actions that don’t in-
crease the number of stacks), and they prevent the standard heuris-
tics from producing informative guidance.

Although domains with zero-cost actions are not common in
the current set of benchmarks, we argue that such domains are
of an important class of models for cost-minimization problems,
i.e., assigning zero costs make sense from a practical, modeling
perspective. For example, consider the driverlog domain, where the
task is to move packages between locations using trucks. The IPC
version of this domain assigns unit costs to all actions. Thus, cost-
optimal planning on this domain seeks to minimize the number
of steps in the plan. However, another natural objective function
would be the one which minimizes the amount of fuel spent by
driving the trucks, assigning cost 0 to all actions except drive-truck.

Similarly, for many practical applications, a natural objective
is to optimize the usage of one key consumable resource, e.g.,
fuel/energy minimization. In fact, two of the IPC domains, Open-
stacks and Cybersec, which were shown difficult for standard
tiebreaking methods in the previous section, both contain many
zero-cost actions, and both are based on industrial applications:
Openstacks models production planning [Fink 99] and Cybersec
models Behavioral Adversary Modeling System [Boddy 05, mini-
mizing decryption, data transfer, etc.].

Therefore, in this paper, we modified various domains into cost
minimization domains with many zero-cost actions. Specifically,
the domain is modified so that all action schemas are assigned cost
0 except for 1 action schema which consumes some key resource.
The last word in the names of these domains indicate the action
which is assigned non-zero cost, e.g., elevator-up is a modified ele-
vator domain where the up action is assigned non-zero cost, and all
other actions have 0 cost. Most of the transportation-type domains
are modified to optimize energy usage (Logistics-fuel, elevator-up
etc.), and assembly-type domains are modified to minimize re-
source usage (Woodworking-cut minimizes wood usage, etc.). We
did not include domains with only a single action schema and stan-
dard domains which already had many zero-cost actions (these are
already in the results for standard IPC domains). We refer to these
28 new domains as zerocost domains.

Figure 3 plots the size of the final plateau of the zerocost domain
instances. As expected, many of these zerocost domains have large
plateaus. Thus, in these cost-minimization problems, the search
strategy within plateaus, i.e., tiebreaking, becomes very important.

3

5. Depth-Based Tiebreaking
In order to solve zerocost problems, the planner needs to per-

form an efficient knowledge-free search within a large, final
plateau. One useful notion which can be used to both understand
and control the search in this situation is the depth of a node, which
represents the number of steps (edges in the search space graph)
from the entrance of the plateau. Given a node n, if its current
parent parent (n) is from the other plateau, i.e., parent (n) has a
different f -value, or different h-value when the first tiebreaking
is present, then depth (n) = 0. Nodes with depth (n) = 0 cor-
respond to the entrance of the plateau. If n and parent (n) are
in the same plateau i.e. share the same f and h, depth (n) is de-
fined as depth (parent (n)) + 1. Based on this simple notion of
depth, we propose three depth-based tiebreaking strategies, where
the nodes are inserted into buckets associated with depths, and
upon expansion, the buckets are chosen according to some pol-
icy. “First depth” (fd), “last depth” (ld), and “random depth” (rd)
choose a bucket with the smallest depth, the largest depth, and a
depth randomly selected at each expansion, respectively.

The effectiveness of each of these depth-based policies depends
on the problem instance. Within the plateau region, all nodes have
the same f and h values, and the goals can be near or far from the
entrance. In the former case, the search should be focused around
the entrance favoring the smaller depths (fd), and the behavior in
the plateau should be much like breadth-first. In the latter case,
the planner should greedily explore the various area of the plateau
by preferring largest depth (ld), much like in depth-first. It may
also be possible for a goal to be at an intermediate depth, in which
case fd could take too much time to reach that depth, and ld may
greedily pass and miss that depth. By an adversary argument, rd,
which selects a random depth and has no depth bias would seem
to be the safest policy.
Tiebreaking within Depth Buckets

Since there can be multiple nodes within the same depth bucket,
a further tiebreaking criterion may be necessary to break ties
among them. We could, for example, apply lifo or fifo policies
at this level – note that [h, fd, fifo] and [h, ld, lifo] are equivalent to
[h, fifo] and [h, lifo], respectively.

However we use a Random Order (ro) policy, which ran-
domly selects an element from the depth bucket selected by the
depth-based tiebreaking. This is because the effectiveness of the
tiebreaking behavior within a bucket can be affected by accidental
biases, e.g., names/orders of action schema in the PDDL domain
definition [Vallati 15]. Thus, we avoid bias at this level of tiebreak-
ing by using ro and assess its expected/average performance.

5.1 Evaluating Depth-Based Tiebreaking
Due to space, we could not fully describe the evaluation of our

tiebreaking strategies in Table 1. For the full article, visit http:
//guicho271828.github.io/publications/.

6. Conclusion
In this paper, we evaluated standard tiebreaking strategies for

A∗. We showed that contrary to conventional wisdom, tiebreaking
based on the heuristic value is not necessary to achieve good per-
formance, and proposed a new framework for defining tiebreaking
policies based on depth. We showed that a depth-based, random-

ized strategy [h, rd, ro], which uses the heuristic value, but explic-
itly avoids depth and ordering biases present in previous meth-
ods, significantly outperforms previous strategies on domains with
zero-cost actions, including practical application domains with re-
source optimization objectives in the IPC benchmarks. The pro-
posed approach is highly effective on domains where zero-cost ac-
tions create large plateau regions where all nodes have the same f

and h costs and the heuristic function provides no useful guidance.

References
[Boddy 05] Boddy, M. S., Gohde, J., Haigh, T., and Harp, S. A.:

Course of Action Generation for Cyber Security Using Classi-
cal Planning., in Proc. ICAPS, pp. 12–21 (2005)

[Burns 12] Burns, E. A., Hatem, M., Leighton, M. J., and
Ruml, W.: Implementing Fast Heuristic Search Code., in Proc.
Symposium on Combinatorial Search (2012)

[Fink 99] Fink, A. and Voss, S.: Applications of Modern Heuristic
Search Methods to Pattern Sequencing Problems, Computers &
Operations Research, Vol. 26, No. 1, pp. 17–34 (1999)

[Hansen 07] Hansen, E. A. and Zhou, R.: Anytime Heuristic
Search., J. Artif. Intell. Res.(JAIR), Vol. 28, pp. 267–297 (2007)

[Hart 68] Hart, P. E., Nilsson, N. J., and Raphael, B.: A Formal
Basis for the Heuristic Determination of Minimum Cost Paths,
IEEE Transactions on Systems Science and Cybernetics, Vol. 4,
No. 2, pp. 100–107 (1968)

[Helmert 06] Helmert, M.: The Fast Downward Planning Sys-
tem., J. Artif. Intell. Res.(JAIR), Vol. 26, pp. 191–246 (2006)

[Helmert 09] Helmert, M. and Domshlak, C.: Landmarks, Criti-
cal Paths and Abstractions: What’s the Difference Anyway?, in
Proc. ICAPS (2009)

[Helmert 14] Helmert, M., Haslum, P., Hoffmann, J., and Nis-
sim, R.: Merge-and-Shrink Abstraction: A Method for Gener-
ating Lower Bounds in Factored State Spaces, J. ACM, Vol. 61,
No. 3, pp. 16:1–16:63 (2014)

[Holte 10] Holte, R. C.: Common Misconceptions Concern-
ing Heuristic Search., in Proc. Symposium on Combinatorial
Search (2010)

[Nilsson 71] Nilsson, N.: Problem Solving Methods in Artificial
Intelligence, McGraw-Hill (1971)

[Pearl 84] Pearl, J.: Heuristics: Intelligent Search Strategies for
Computer Problem Solving, Addison-Wesley Pub. Co., Inc.,
Reading, MA (1984)

[Röger 10] Röger, G. and Helmert, M.: The More, the Merrier:
Combining Heuristic Estimators for Satisficing Planning, in
Proc. ICAPS, pp. 246–249 (2010)

[Vallati 15] Vallati, M., Hutter, F., Chrpa, L., and Mc-
Cluskey, T. L.: On the Effective Configuration of Planning Do-
main Models, in Proc. IJCAI (2015)

4

