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Efficient Acquisition of Behaviors by Harmonizing Reinforcement Learning with Imitation Learning
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This paper presents a composite machine learning architecture of imitation learning and reinforcement learning. Humans
usually learn tasks through both imitation learning and reinforcement learning. After observing superiors, learners start
practicing through trial and error. In this context, imitation learning and reinforcement learning seem harmonized as a smooth
series of learning phases. From the viewpoint of machine learning usually requires many trials and errors in an agent’s
learning phase. However, imitating other people’s way of performing the task can reduce the amount of time. Based on this
idea, the composition of reinforcement learning and imitation learning is proposed as an integrated machine learning
architecture. An additional reward system is introduced, which connects these learning algorithms more naturally.
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